Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Analysis of a side surface radial velocity of a plastic-rigid cylindrical rod during perpendicular striking a rigid plate
Języki publikacji
Abstrakty
Wyprowadzono zamknięte wzory w postaci elementarnych analitycznych funkcji, które jednoznacznie określają dynamikę sztywno-plastycznego pręta uderzającego w nieodkształcalną płytę. Materiał pręta modelowano w strefie odkształceń plastycznych liniowym wzmocnieniem. Rozwiązanie obejmuje duże odkształcenia pręta. Uzyskane w pracy wyniki teoretyczne dobrze aproksymują dane eksperymentalne.
The closed formulae in the form of elementary analytic functions, which uniquely determined the dynamics of the plastic-rigid rod striking a rigid plate, have been derived. The material of the rod has been modelled to linear strain hardening. The formulae are rightful for large strains of the rod. The theoretical results of the paper are conformable to experimental data.
Czasopismo
Rocznik
Tom
Strony
9--26
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
autor
autor
autor
- Wojskowa Akademia Techniczna, Wydział Mechatroniki i Lotnictwa, 00-908 Warszawa, ul. S. Kaliskiego 2, edward.wlodarczyk@wat.edu.pl
Bibliografia
- [1] G. I. Taylor, The use of flat-ended projectiles for determining dynamic yield stress, I. Theoretical considerations, Proc. Roy. Soc., Series a, London, 194, 1948, 289.
- [2] A. C. Whiffin, The use flat-ended projectiles for determining dynamic yield stress, II. Tests on various metallic materials, Proc. Roy. Soc., Series a, London, 194, 1948, 300.
- [3] G. I. Barenblatt, A. I. Ishlinskii, On the impact of a viscoplastic bar on rigid wall, Prikl. Math. Mekh., 26, 1962, 497.
- [4] J. D. Cinnamon, S. S. Jones, J. C. Foster Jr, P. P. Gillis, An analysis of early time deformation rate and stress in the Taylor impact test. Mechanical Behavior of Materials, VI. Proc. Of the Sixth Int. Materials Conf., eds. M. Jano and T. Inouc, Kyoto, Japan, 1, July 1991, 337.
- [5] N. Cristescu, Dynamic plasticity, North-Holland, Amsterdam, 1967.
- [6] J. C. Foster, Jr., P. J. Maudlin, S. E. Jones, On the Taylor test, Part I: A continuum analysis of plastic wave propagation, Proc of the 1995 APS Topical Conf.: An Shock Compression of Condensed Matter, Seattle, Washington, August 1995, 291.
- [7] J. B. Hawkyard, D. Easoton, W. Johnson, The mean dynamic yield strength of cooper and low carbon steel at elevated temperatures from measurements of the “muschrooms” of flat-ended projectiles, Int. J. Mech. Sci., 10, 1968, 929.
- [8] J. B. Hawkyard, A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations, Int. J. Mech. Sci., 11, 1963, 313.
- [9] I. M. Hutchings, Estimation of yield stress in polymers at high strain-rates using G. I. Taylors impact technique, J. Mech. Phys. Solids, 26, 1979, 289.
- [10] G. R. Johnson, T. J. Holmquist, Evaluation of cylinder - impact test data for constitutive model constants, J. Appl. Phys., 64, 1988, 3901.
- [11] S. E. Jones, P. P. Gillis, J. C. Foster, Jr, L. X. Wilson, A one-dimensional two-phase flow model for Taylor impact specimens, J. Engr. Mat'ls. Tech., ASME, 113, 1991, 228.
- [12] S. E. Jones, P. P. Gillis, J. C. Foster, Jr, On the equation of motion of the undeformed section of a Taylor impact specimen, J. Appl. Phys., 61, 1987, 499.
- [13] S. E. Jones, P. J. Maudlin, P. P. Gillis, J. C. Foster, Jr, An analytical interpretation of high strain rate materials behavior during early time plastic deformation in the Taylor impact test, Computers In Engineering, ed. G. A. Gabriele, 2, ASME, New York, 1992, 173.
- [14] E. H. Lee, S. J. Tupper, Analysis of plastic deformation in a steel cylinder striking a rigid target, J. Appl. Mech., Trans. ASM E, 21, 1954, 63.
- [15] P. J. Maudlin, J. C. Foster, Jr, S. E. Jones, An engineering analysis of plastic wave propagation in the Taylor test, Int. J. Impact Engng, 19, 1997, 95.
- [16] P. J. Maudlin, J. C. Foster, Jr, S. E. Jones, On the Taylor test, Part III: A continuum mechanics code analysis of plastic wave propagation, Los Alamos National Laboratory report LA-12836-MS, November 1994.
- [17] P. J. Maudlin, R. F. Davidson, R. J. Henninger, Implementation and assessement of the mechanical-treshold-stress model using the EPIC2 and PINON computer codes, Los Alamos National Laboratory report LA-11895-MS, September 1990.
- [18] M. A. Meyers, Dynamic behavior of materials, John Wiley an Sons, INC , New York-Chester-Brisbane-Toronto-Singapoure, 1994.
- [19] T. C. T. Ting, Impact of a nonlinear viscoplastic rod on a rigid wall, J. Appl. Mech. Trans. ASME, 33, 1966, 505.
- [20] L. L. Wilson, J. W. House, M. E. Nixon, Time resolved deformation from the cylinder impact test AFATL-TR-89-76, November 1989.
- [21] E. Włodarczyk et al., Estimation of dynamic yield stress of shell steels by means of the Taylor impact test (in Polish), Bull, Acad., 1, 56, 2007, 113.
- [22] S .E. JON ES et al., An engineering analysis of plastic wave propagation in the Taylor test, Int. J. Engng, 19, 2, 1997, 95-105.
- [23] Kh. A. Rakhmatulin, Yu. A. Dem'yanow, Strength under intense short-tern loadings (in Russian), Gostizdat, Moskva, 1961.
- [24] S. Kaliski, Cz. Rymarz, K. Sobczyk, E. Włodarczyk, Waves, PWN, Warsaw, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1992.
- [25] P. G. Shewmon (ed.), V. F. Zackay, Response of metals to high velocity deformation, Interscience Publischers, New York-London, 1961.
- [26] M. F. Ashby, D. R. H. Jones, Engineering materials, t. 1. An introduction to their properties and applications, Cambridge University, England, 1980 (przekład na język polski: Materiały Inżynierskie, t. 1. Właściwości i zastosowania, WNT, Warszawa, 1995).
- [27] W. Olszak, P. Perzyna, A. Sawczuk, Teoria plastyczności, PWN, Warszawa, 1965.
- [28] E. Włodarczyk, Balistyka końcowa pocisków amunicji strzeleckiej, t. 1, WAT, Warszawa, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0014-0001