PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Właściwości strukturalne kserożeli węglowych otrzymywanych poprzez katalityczną grafityzację kserożeli rezorcynowo-furfuralowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Structural characterization of carbon xerogels obtained via catalytic graphitization of resorcinol-furfural xerogels
Języki publikacji
PL
Abstrakty
PL
Przedstawiono charakterystykę porowatych materiałów węglowych o zróżnicowanym stopniu grafityzacji otrzymywanych poprzez pirolizę kserożeli organicznych impregnowanych chlorkami Fe(II), Ni(II), Co(II) i Cu(II). Impregnowane żele organiczne otrzymywano metodą zol-żel poprzez zachodzącą w wodno-metanolowym roztworze chlorków metali kondensację i polimeryzację rezorcyny i furfuralu. W wyniku karbonizacji żeli organicznych otrzymywano układy kompozytowe: kserożel węglowy-metal przejściowy. Generowane na etapie karbonizacji metale powodowały katalityczną grafityzację amorficznych kserożeli węglowych. Po usunięciu cząstek metali z węglowej matrycy uzyskiwano grafityzowane kserożele węglowe o multimodalnej strukturze porowatej z silnie rozwiniętą mezoporowatością. W pracy przeanalizowano wpływ składu mieszaniny wyjściowej (m.in. zawartość i rodzaj chlorku metalu, zawartość metanolu) i temperatury karbonizacji na stopień grafityzacji i strukturę porowatą otrzymywanych kserożeli węglowych. Spośród zastosowanych chlorków najbardziej efektywnym prekursorem katalizatora grafityzacji okazał się chlorek żelaza(II). Badano również możliwość dodatkowego rozwinięcia mezoporowatości kserożeli poprzez zastosowanie roztworów koloidalnej krzemionki. Otrzymane materiały analizowano przy użyciu technik: SEM, TEM, XRD, TG, spektroskopii Ramana (RS) i niskotemperaturowej adsorpcji azotu.
EN
Carbon xerogels with various degrees of graphitization were obtained via pyrolysis of organic xerogels doped with metal (Fe, Ni, Co, Cu) chlorides. Doping was realized through chloride solubilization in a water-methanol solution of resorcinol and furfural. During the carbonization of the doped organic xerogels, metallic nanoparticles that catalyze the formation of graphitic structures were generated. The removal of metal leads to carbon xerogels characterized by multimodal porosity with substantially enhanced mesoporosity. Higher pyrolysis temperatures significantly decreased microporosity by enhancing the degree of graphitization of the carbon xerogels created. The possibility of enhancing the porosity of xerogels via templating with colloidal silica was also investigated. Among the investigated salts, iron(II) chloride seems to be the best precursor of graphitization catalyst. The carbon xerogels obtained were investigated by means of TEM, XRD, SEM, Raman spectroscopy, N₂ sorption, and TGA.
Rocznik
Strony
339--377
Opis fizyczny
Bibliogr. 103 poz., wykr.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, Instytut Chemii, 00-908 Warszawa, ul. S. Kaliskiego 2
Bibliografia
  • [1] D-W. Wang, F. Li, M. Liu, G. Q. Lu, H-M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem., 120, 2008, 379-382.
  • [2] F. Su, X. S. Zhao, Y. Wang, J. Zeng, Z. Zhou, J. Yang Lee, Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications, J. Phys. Chem. B, 109, 2005, 20200-20206.
  • [3] Y. Wang, F. Su, Y. J. Lee, X. S. Zhao, Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: synthesis and performance in reversible Li-ion storage, Chem. Mater., 18, 2006, 1347-1353.
  • [4] J. B. Joo, Y. J. Kim, W. Kim, P. Kim, J. Yi, Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation, Catalysis Commun., 10, 2008, 267-271.
  • [5] J. J. Niu, J. N. Wang, L. Zhang, Y. Shi, Electrocatalytical activity on oxidizing hydrogen and methanol of novel carbon nanocages of different pore structures with various platinum loadings, J. Phys. Chem. C, 111, 2007, 10329-10335.
  • [6] J. N. Wang, L. Zhang, J. J. Niu, F. Yu, Z. M. Sheng, Y. Z. Zhao, H. Chang, C. Pak, Synthesis of high surface area, water-dispersible graphitic carbon nanocages by an in situ template approach, Chem. Mater., 19, 2007, 453-459.
  • [7] B. Y. Xia, J. N. Wang, X. X. Wang, J. J. Niu, Z. M. Sheng, M. R. Hu, Q. C. Yu, Synthesis and application of graphitic carbon with high surface area, Adv. Funct. Mater., 18, 2008, 1790-1798.
  • [8] S. J. Teng, X. X. Wang, B. Y. Xia, J. N. Wang, Preparation of hollow carbon nanocages by iodineassisted heat treatment, J. Power Sources, 195, 2010, 1065-1070.
  • [9] Z. M. Sheng, J. N. Wang, Thin-walled carbon nanocages: direct growth, characterization, and applications, Adv. Mater., 20, 2008, 1071-1075.
  • [10] J. N. Wang, Y. Z. Zhao, J. J. Niu, Preparation of graphitic carbon with high surface area and its application as an electrode material for fuel cells, J. Mater. Chem., 17, 2007, 2251-2256.
  • [11] M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, A. B. Fuertes, Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports, Carbon, 46, 2008, 931-939.
  • [12] F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee, X. S. Zhao, Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells, Chem. Mater., 17(15), 2005, 3960-3967.
  • [13] J. Zeng, F. Su, J. Y. Lee, W. Zhou, X. S. Zhao, Methanol oxidation activities of Pt nanoparticles supported on microporous carbon with and without a graphitic shell, Carbon, 44, 2006, 1713-1717.
  • [14] T-W. Kim, I-S. Park, R. Ryoo, A synthetic route to ordered mesoporous carbon materials with graphitic pore walls, Angew. Chem. Int. Ed., 42, 2003, 4375-4379.
  • [15] Z. Lei, Y. Xiao, L. Dang, W. You, G. Hu, J. Zhang, Nickel-catalyzed fabrication of SiO2, TiO2/graphitized carbon, and the resultant graphitized carbon with periodically macroporous structure, Chem. Mater., 19, 2007, 477-484.
  • [16] S. B. Yoon, G. S. Chai, S. K. Kang, J-S. Yu, K. P. Gierszal, M. Jaroniec, Graphitized pitchbased carbons with ordered nanopores synthesized by using colloidal crystals as templates, J. Am. Chem. Soc., 127, 2005, 4188-4189.
  • [17] M. Sevilla, A. B. Fuertes, Catalytic graphitization of templated mesoporous carbons, Carbon, 44, 2006, 468-474.
  • [18] A-H. Lu, W-C. Li, N. Matoussevitch, B. Spliethoff, H. Bönnemann, F. Schüth, Highly stable carbon-protected cobalt nanoparticles and graphite shells, Chem. Commun., 2005, 98-100.
  • [19] M. Sevilla, A. B. Fuertes, Easy synthesis of graphitic carbon nanocoils from saccharides, Mater. Chem. Phys., 113, 2009, 208-214.
  • [20] Z. Li, M. Jaroniec, Y-J. Lee, L. R. Radovic, High surface area graphitized carbon with uniform mesopores synthesised by a colloidal imprinting method, Chem. Commun., 2002, 1346-1347.
  • [21] W. M. Qiao, Y. Song, S. H. Hong, S. Y. Lim, S. H. Yoon, Y. Korai, I. Mochida, Development of mesophase pitch derived mesoporous carbons through a commercially nanosized template, Langmuir, 22, 2006, 3791-3797.
  • [22] Z. Lei, Y. Xiao, L. Dang, S. Bai, L. An, Graphitized carbon with hierarchical mesoporous structure templated from colloidal silica particles, Micropor. Mesopor. Mater., 109, 2008, 109-117.
  • [23] Y. Xia, R. Mokaya, Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method, Adv. Mater., 16, 2004, 1553-1558.
  • [24] Y. Xia, R. Mokaya, Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials, Chem. Mater., 17(6), 2005, 1553-1560.
  • [25] Y. Xia, Z. Yang, R. Mokaya, Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica, J. Phys. Chem. B, 108(50), 2004, 19293-19298.
  • [26] Y. Xia, Z. Yang, R. Mokaya, Simultaneous control of morphology and porosity in nanoporous carbon: graphitic mesoporous carbon nanorods and nanotubules with tunable pore size, Chem. Mater., 18(1), 2006, 140-148.
  • [27] P. F. Fulvio, M. Jaroniec, C. Liang, S. Dai, Polypyrrole-based nitrogen-doped carbon replicas of SBA-15 and SBA-16 containing magnetic nanoparticles, J. Phys. Chem. C, 112(34), 2008, 13126-13133.
  • [28] A. B. Fuertes, S. Alvarez, Graphitic mesoporous carbons synthesised through mesostructured silica templates, Carbon, 42, 2004, 3049-3055.
  • [29] A. B. Fuertes, T. A. Centeno, Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor, J. Mater. Chem., 15, 2005, 1079-1083.
  • [30] H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, D. Zhao, A simple melt impregnation method to synthesize ordered mesoporous carbon and carbon nanofiber bundles with graphitized structure from pitches, J. Phys. Chem. B, 108, 2004, 17320-17328.
  • [31] C. H. Kim, D-K. Lee, T. J. Pinnavaia, Graphitic mesostructured carbon prepared from aromatic precursors, Langmuir, 20, 2004, 5157-5159.
  • [32] M. Kruk, K. M. Kohlhaas, B. Dufour, E. B. Celer, M. Jaroniec, K. Matyjaszewski, R. S. Ruoff, T. Kowalewski, Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas, Micropor. Mesopor. Mater., 102, 2007, 178-187.
  • [33] C. N. Mbileni, F. F. Prinsloo, M. J. Witcomb, N. J. Coville, Synthesis of mesoporous carbon supports via liquid impregnation of polystyrene onto a MCM-48 silica template, Carbon, 44, 2006, 1476-1483.
  • [34] S. B. Yoon, J. Y. Kim, J-S. Yu, A direct template synthesis of nanoporous carbons with high mechanical stability using as-synthesized MCM-48 hosts, Chem. Commun., 2002, 1536-1537.
  • [35] X. Ji, P. S. Herle, Y. Rho, L. F. Nazar, Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers, Chem. Mater., 19, 2007, 374-383.
  • [36] Z. Lei, S. Bai, Y. Xiao, L. Dang, L. An, G. Zhang, Q. Xu, CMK-5 mesoporous carbon synthesized via chemical vapor deposition of ferrocene as catalyst support for methanol oxidation, J. Phys. Chem. C, 112(3), 2008, 722-731.
  • [37] S. Han, Y. Yun, K-W. Park, Y-E. Sung, T. Hyeon, Simple solid-phase synthesis of hollow graphitic nanoparticles and their application to direct methanol fuel cell electrodes, Adv. Mater., 15(22), 2003, 1922-1925.
  • [38] T. Hyeon, S. Han, Y-E. Sung, K-W. Park, Y-W. Kim, High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils, Angew. Chem. Int. Ed., 42, 2003, 4352-4356.
  • [39] M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, A. B. Fuertes, Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports, J. Phys. Chem. C, 111(27), 2007, 9749-9756.
  • [40] P. V. Shanahan, L. Xu, C. Liang, M. Waje, S. Dai, Y. S. Yan, Graphitic mesoporous carbon as a durable fuel cell catalyst support, J. Power Sources, 185, 2008, 423-427.
  • [41] N. Liu, X. Wang, Y. Wu, L. Wang, Strings of interconnected hollow carbon nanoparticles with porous shells prepared using simple solid-phase synthesis, Mater. Sci. Eng. B, 158, 2009, 79-81.
  • [42] F-J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, Y. Yamada, Catalytic graphitization of carbon aerogels by transition metals, Langmuir, 16(9), 2000, 4367-4373.
  • [43] R. Fu, T. F. Baumann, S. Cronin, G. Dresselhaus, M. S. Dresselhaus, J. H. Satcher, Jr., Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels, Langmuir, 21, 2005, 2647-2651.
  • [44] T. K. Lee, X. Ji, M. Rault, L. F. Nazar, Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines, Angew. Chem. Int. Ed., 48, 2009, 5661-5665.
  • [45] M. Sevilla, C. Salinas Martínez-de Lecea, T. Valdés-Solís, E. Morallón, A. B. Fuertes, Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports, Phys. Chem. Chem. Phys., 10, 2008, 1433-1442.
  • [46] E. Raymundo-Pińero, F. Leroux, F. Béguin, A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer, Adv. Mater., 18, 2006, 1877-1882.
  • [47] G. G. Wallace, J. Chen, D. Li, S. E. Moulton, J. M. Razal, Nanostructured carbon electrodes, J. Mater. Chem., 2010, 20, 3553-3562.
  • [48] E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 39, 2001, 937-950.
  • [49] P. J. F. Harris, New Perspectives on the Structure of Graphitic Carbons, Crit. Rev. Solid State Mater. Sci., 30, 2005, 235-253.
  • [50] J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, A flexible carbon counter electrode for dye-sensitized solar cells, Cabron, 2009, 2704-2708.
  • [51] H. Yamada, Y. Watanabe, I. Moriguchi, T. Kudo, Rate capability of lithium intercalation into nano-porous graphitized carbons, Sol. St. Ionics, 179, 2008, 1706-1709.
  • [52] Z. Li, M. Jaroniec, Colloid-Imprinted Carbons as Stationary Phases for Reversed-Phase Liquid Chromatography, Anal. Chem., 76, 2004, 5479-5485.
  • [53] C. West, C. Elfakir, M. Lafosse, Porous graphitic carbon: A versatile stationary phase for liquid chromatography, J. Chromatogr. A, 1217, 2010, 3201-3216.
  • [54] C. Liang, S. Dai, G. Guiochon, A graphitized-carbon monolithic column, Anal. Chem., 75(18), 2003, 4904-4912.
  • [55] J. H. Knox, B. Kaur, G. R. Millward, Structure and Performance of Porous Graphitic Carbon in Liquid Chromatography, J. Chromatogr., 352, 1986, 3-25.
  • [56] E. Raymundo-Pińero, P. Azais, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, F. Béguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation, Carbon, 43(4), 2005, 786-795.
  • [57] S-H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I. Mochida, KOH activation of carbon nanofibers, Carbon, 42(8-9), 2004, 1723-1729.
  • [58] C. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S. H. Overbury, Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane, J. Am. Chem. Soc., 131, 2009, 7735-7741.
  • [59] Z. Yang, Y. Xia, R. Mokaya, Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates, Micropor. Mesopor. Mater., 86, 2005, 69-80.
  • [60] A. Oya, S. Otani, Catalytic graphitization of carbons by various metals, Carbon, 17(2), 1979, 131-137.
  • [61] A. Oya, H. Marsh, Phenomena of catalytic graphitization, J. Mater. Sci., 17(2), 1982, 309-322.
  • [62] L. Wang, C. Tian, B. Wang, R. Wang, W. Zhou, H. Fu, Controllable synthesis of graphitic carbon nanostructures from ion-exchange resin-iron complex via solid-state pyrolysis process, Chem. Commun., 2008, 5411-5413.
  • [63] C. Wang, D. Ma, X. Bao, Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation, J. Phys. Chem. C, 112, 2008, 17596-17602.
  • [64] A-H. Lu, W-C. Li, E-L. Salabas, B. Spliethoff, F. Schűth, Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon, Chem. Mater., 18, 2006, 2086-2094.
  • [65] Z. M. Sheng, J. N. Wang, Growth of magnetic carbon with a nanoporous and graphitic structure, Carbon, 47, 2009, 3271-3279.
  • [66] L-S. Zhang, W. Li, Z-M. Cui, W-G. Song, Synthesis of Porous and Graphitic Carbon for Electrochemical Detection, J. Phys. Chem. C, 113, 2009, 20594-20598.
  • [67] B. El Hamaoui, L. Zhi, J. Wu, J. Li, N. T. Lucas, Ž. Tomović, U. Kolb, K. Müllen, Solid-State Pyrolysis of Polyphenylene-Metal Complexes: A Facile Approach Toward Carbon Nanoparticles, Adv. Funct. Mater., 17, 2007, 1179-1187.
  • [68] R. Fu, M. S. Dresselhaus, G. Dresselhaus, B. Zheng, J. Liu, J. Satcher, Jr., T. F. Baumann, The growth of carbon nanostructures on cobalt-doped carbon aerogels, J. Non-Cryst. Solids, 318, 2003, 223-232.
  • [69] S. A. Steiner, T. F. Baumann, J. Kong, J. H. Satcher, Jr., M. S. Dresselhaus, Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes, Langmuir, 23, 2007, 5161-5166.
  • [70] N. Job, R. Pirard, J. Marien, J-P. Pirard, Synthesis of transition metal-doped carbon xerogels by solubilization of metal salts in resorcinol-formaldehyde aqueous solution, Carbon, 42, 2004, 3217-3227.
  • [71] N. Job, R. Pirard, J. Marien, J-P. Pirard, Porous carbon xerogels with texture tailored by pH control during sol-gel process, Carbon, 42(3), 2004, 619-628.
  • [72] N. Job, F. Sabatier, J. P. Pirard, M. Crine, A. Leonard, Towards the production of carbon xerogel monoliths by optimizing convective drying conditions, Carbon, 44(12), 2006, 2534-2542.
  • [73] N. Job, R. Pirard, B. Vertruyen, J-F. Colomer, J. Marien, J-P. Pirard, Synthesis of transition metal-doped carbon xerogels by cogelation, J. Non-Cryst. Solids, 353, 2007, 2333-2345.
  • [74] Y. Hanzawa, H. Hatori, N. Yoshizawa, Y. Yamada, Structural changes in carbon aerogels with high temperature treatment, Carbon 40, 2002, 575-581.
  • [75] P. J. F. Harris, Structure of non-graphitising carbons, International Materials Reviews 42(5), 1997, 206-218.
  • [76] E. Fitzer, W. Schafer, The effect of crosslinking on the formation of glasslike carbons from thermosetting resins, Carbon, 8, 1970, 353-364.
  • [77] J. H. Knox, M. T. Gilbert, UK Patent 2035282, 1978, oraz UK Patent 7939449, 1979.
  • [78] T. Obayashi, M. Ozawa, T. Kawase, Tonen Corporation, European Patent 0458548A, 1990.
  • [79] W. Kiciński, Aerożele węglowe otrzymywane z prekursora rezorcynowo-furfuralowego, Biul. WAT, 58, 4, 2009, 197-221.
  • [80] H. Marsh, D. Crawford, D. W. Taylor, Catalytic graphitization by iron of isotropic carbon from polyfurfuryl alcohol, 725-1090 K. A high resolution electron microscope study, Carbon, 21, 1983, 81-87.
  • [81] B. E. Warren, X-Ray Diffraction, Dover Publications, New York, 1990.
  • [82] A. L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev., 56, 1939, 978-982.
  • [83] Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon, 45, 2007, 1686-1695.
  • [84] J. Biscole, B. E. Warren, An X-Ray Study of Carbon Black, J. Appl. Phys., 13, 1942, 364-371
  • [85] C. Moreno-Castilla, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, Physicochemical surface properties of Fe, Co, Ni, and Cu-doped monolithic organic aerogels, Langmuir, 19, 2003, 5650-5655.
  • [86] F. Tuinstra, J. L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys., 53, 1970, 1126-1130.
  • [87] Y. Wang, D. C. Alsmeyer, R. L. McCreery, Raman spectroscopy of carbon materials: structural basis of observed spectra, Chem. Mater., 2, 1990, 557-563.
  • [88] S. Brunauer, P. H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60, 1938, 309-319.
  • [89] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Appl. Chem., 57, 4, 1985, 603-619.
  • [90] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids. Principles, methodology and applications, Academic Press, San Diego, CA, 1999.
  • [91] C-W. Huang, S-C. Chiu, W-H. Lin, Y-Y. Li, Preparation and Characterization of Porous Carbon Nanofibers from Thermal Decomposition of Poly(ethylene glycol), J. Phys. Chem. C, 112, 2008 926-931.
  • [92] Y. Zhu, L. Zhang, F. M. Schappacher, R. Pottgen, J. Shi, S. Kaskel, Synthesis of Magnetically Separable Porous Carbon Microspheres and Their Adsorption Properties of Phenol and Nitrobenzene from Aqueous Solution, J. Phys. Chem. C, 112, 2008, 8623-8628.
  • [93] J. Choma, J. A. Zdenkowski, Standardowe dane adsorpcji azotu do charakterystyki porowatych adsorbentow mineralnych, Ochrona Środowiska, 4, 79, 2000, 3-7.
  • [94] M. Kruk, Z. Li, M. Jaroniec, Nitrogen Adsorption Study of Surface Properties of Graphitized Carbon Blacks, Langmuir, 15, 1999, 1435-1441.
  • [95] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon, 46, 2008, 833-840.
  • [96] J. W. Long, M. Laskoski, T. M. Keller, K. A. Pettigrew, T. N. Zimmerman, S. B. Qadri, G. W. Peterson, Selective-combustion purification of bulk carbonaceous solids to produce graphitic nanostructures, Carbon, 48, 2010, 501-508.
  • [97] C. Liang, S. Dai, Dual Phase Separation for Synthesis of Bimodal Meso-/Macroporous Carbon Monoliths, Chem. Mater., 21, 2009, 2115-2124.
  • [98] J. Kiefer, J. L. Hedrick, J. G. Hilborn, Macroporous Thermosets by Chemically Induced Phase Separation, Advances in Polymer Science, 147, 1999, 161-247.
  • [99] K. Nakanishi, N. Tanaka, Sol–Gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations, Acc. Chem. Res., 40, 2007, 863-873.
  • [100] R. W. Pekala, D. W. Schaefer, Structure of organic aerogels. 1. Morphology andscaling, Macromolecules, 26, 1993, 5487-5493.
  • [101] N. Job, C. J. Gommes, R. Pirard, J-P. Pirard, Effect of the counter-ion of the basification agent on the pore texture of organic and carbon xerogels, J. Non-Cryst. Solids, 354, 2008, 4698-4701.
  • [102] R. Anton, In situ TEM investigations of reactions of Ni, Fe and Fe-Ni alloy particles and their oxides with amorphous carbon, Carbon, 47, 2009, 856-865.
  • [103] O. P. Krivoruchko, V. I. Zaikovskii, Formation of liquid phase in the carbon-metal system at unusually low temperature, Kinet. Catal., 39, 1998, 561-570.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0007-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.