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Abstract. The paper deals with fatigue damage accumulated in elements of machines and structures 
subjected to stresses in the high-cycle fatigue regime. Uniaxial stationary stochastic stresses are considered 
which are modelled by an equivalent stress in the form of a Gaussian process. The equivalence conditions 
are based on the theory of energy transformation systems. It is assumed that the mean value and the 
power spectral density of the original stress are known. The ratio of the required design life and the 
expected value of the time to failure is determined as the fatigue damage parameter the values of which 
can be used for visualization of fatigue damage of the material by means of maps.
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Nomenclature
a	 — amplitude of the equivalent stress;
D	 — fatigue damage parameter;
E{.}	 — expected value;
j	 — imaginary unity;
k	 — natural number;
K	 — fatigue strength coefficient;
K()	 — autocorrelation function;
m	 — fatigue strength exponent;
N	 — number of cycles to failure;
Re	 — tensile yield strength;
se	 — standard deviation of the equivalent stress amplitude;
S()	 — power spectral density;
Td	 — required design life;
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Tf	 — time to fatigue failure;
Γ	 — gamma function;
	 — Dirac’s delta function;

e 	 — equivalent stress;
x 	 — original stress;

x(t)	 — stochastic stress process of zero mean value;
me	 — mean value of the equivalent stress;
mx	 — mean value of the original stress;
τ	 — time interval;
φ 	 — phase angle of the equivalent stress;
ω	 — circular frequency;
ωe	 — circular frequency of the equivalent stress;
()*⋅ 	 — complex conjugate.

1. Introduction

Damage by fatigue is one of the most common causes of failures that engineers 
must deal with. Some estimates are that over three-quarters of all failures of 
dynamically loaded elements are due to fatigue. The development of a fatigue 
crack is influenced by a number of factors associated with material properties, 
component designs and loading conditions. Machinery details, engine parts and 
vehicle elements are usually subjected to steady loading conditions resulting in 
constant, periodic and/or stationary stochastic stresses. For example, in marine 
environment, constant stresses are caused by dead-weight, hydrostatic pressure, 
wind and current, whereas those encountered in machinery systems are produced 
by torque, thrust, centrifugal force, etc. In static problems, the load capacity of 
metallic elements is referred to the yield strength or to the ultimate strength. 
In the case of multiaxial static load, a reduced uniaxial stress, equivalent to the 
original one in terms of effort of the material, is calculated. In design calculations 
of dynamically loaded machines and structures, the fatigue limits and/or S-N 
curves (Wöhler curves) are taken into account [1, 2]. In a multiaxial stress state, an 
equivalent uniaxial stress is also frequently determined by means of an adequate 
fatigue strength theory [3-5]. To facilitate the solution of fatigue problems, the Finite 
Element Method, fatigue-oriented software (ANSYS, WinLIFE, FEMFAT, etc.) and 
visualization of calculation results on maps can be used [5-7]. In [5], an algorithm 
for determination of fatigue damage maps, with the application of COMSOL and 
MATLAB modules [8, 9], is proposed. It deals with zero mean stochastic stresses 
which can be determined numerically in fatigue-critical regions of structures. Then, 
also the probability of fatigue damage accumulated in the material in these regions 
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can be calculated and displayed on maps. The load cases discussed in [5] concern 
multiaxial stresses defined in the frequency domain.

In the present paper, uniaxial stationary stochastic stresses in the high-cycle 
fatigue regime are considered which are modelled by an equivalent stress in the 
form of a Gaussian process. The equivalence conditions are based on the theory of 
energy transformation systems [10] which is convenient for fatigue calculations 
both in the time domain and in the frequency domain [4]. Bearing in mind the 
effectiveness and application range of spectral methods, hereunder it is assumed 
that the mean value and the power spectral density of the original stress are known. 
As the fatigue damage parameter to be displayed on maps, the ratio of the required 
design life and the expected value of the time to fatigue failure is chosen.

2. Fatigue damage parameter

The proposed fatigue damage parameter can be defined in deterministic 
approach by means of the uniaxial normal harmonic stress

	 ( ) ( )sin .m at t    a= + + 	 (1)

Its amplitude a and the mean value m are calculated from the two successive 
extrema max  and min of the stress history as

	
	

( ) ( )max min max min
1 1, .
2 2a m     = − = +

	
(2)

The maximum allowable stress amplitude A in design for an infinite fatigue 
life under asymmetric normal stress can be determined from empirical equations 
[1, 2], such as Goodman equation
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for brittle materials, and Soderberg equation

	
	

0 1 ,m

e

A Z
R
 

= −   	
(4)

for ductile materials, 
where:	 Z0 is the fatigue limit under fully reversed stress, denoted Zgo at bending  

	 and Zrc at tension-compression;
	 Re is the tensile yield strength;
	 Rm is the ultimate tensile strength.

In what follows ductile materials are considered.
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In the case of uniaxial shear stress, instead of Z0 and Re in Eq. (4) the fatigue limit 
/ 3so goZ Z=  and the yield strength / 3es eR R=  (for steels) should be inserted.

The necessary modification of Eq. (4) to indicate finite fatigue life in the high-
cycle regime reads [11]

	
	

1 ,m
a

eR


 
 

= −   	
(5)

where:  is the amplitude of the fully reversed stress at the given number of cycles to 
failure N, a is the amplitude of the stress of Eq. (1) which will give that fatigue life.

For the relation between  and N in the high-cycle fatigue regime, the following 
equation of the S-N curve is commonly accepted

	 ,mN K = 	 (6)

where K is the fatigue strength coefficient and m is the fatigue strength exponent, 
both chosen for each particular case on the basis of the relevant test data [2, 11]. 
Combining Eqs. (5) and (6) yields
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So, the time to fatigue failure under the stress, Eq. (1), is given by
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As the parameter of the fatigue damage, accumulated in the material during the 
required design life Td, in the present paper the following quantity is proposed
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(9)

where E{.} denotes the expected value.

3. Expected value of the time to fatigue failure

In the case of uniaxial stochastic stress ( )x t  it can be defined in the time 
domain by means of various expressions, in particular by

	 ( ) sin( ),x xt t   a= +

	 (10)
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	 ( ) sin( ),x mx xt t    a= + +

	 (11)

	 ( ) ( ),x xt t =

	 (12)

	 ( ) ( ),x mx xt t  = +

	 (13)

where:	 x is the stress amplitude (random variable);
		  mx is the mean stress value (deterministic quantity);
		  a is the stress phase angle (random variable);
		  x(t) is the stochastic process (with zero mean value);
		   is the circular frequency (deterministic quantity).

In this paper, it is assumed that x(t) is a stationary (in the wide sense) process.
In accordance with Eq. (8), the expected value of the time to fatigue failure 

under the stress, Eq. (11), is
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(14)

Simplicity of Eq. (14) suggests modelling of the stress, Eq. (13), with the 
equivalent stress of the form of Eq. (11), i.e.

	 ( ) ( ) ( ) ( )1 1sin exp j exp j ,e me e me e et a t a t a t      −= + + = + + − 	 (15)

and calculating
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(16)

after determination of me, e, and { }.mE a  Here me denotes the mean value of 
the equivalent stress, a and φ are the random variables representing amplitude and 
phase angle of the equivalent stress, e is its constant circular frequency, and
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(17)

	
* *

1 1 1 1 1 1{ } { } { } { } 0,E a E a E a a E a a− − −= = = =
	

(18)

where:	 j is the imaginary unity;
		  (.)* is the complex conjugate.
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4. Equivalent stochastic stress

Comparing Eqs. (13) and (15) yields

	
,me mx =
	

(19)

which enables to proceed with the processes, Eq. (12), and

	 1 1( ) sin( ) exp(j ) exp( j ),e e e et a t a t a t    −= + = + − 	 (20)

instead of the processes of Eqs. (13) and (15). In what follows it is assumed that 
( )e t  represents a Gaussian process satisfying the condition

	 ( ) ( ),
e x

K K  =
  	 (21)

where:	 ( )
e

K 

 is the autocorrelation function of the stress, Eq. (20);
		  ( )

x
K 

 is the autocorrelation function of the stress, Eq. (12);
		  τ is the time interval.

With Eqs. (12) and (20), Eq. (21) leads to
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(22)

which gives

	 [ ]21 { } exp(j ) exp( j ) ( ),
4 xe eE a K    + − = 	 (23)

where:	 2{ }E a  is the mean-square value of the equivalent stress amplitude;
		  *

1 2( ) { ( ) ( )}
x x xK E t t   =  is the autocorrelation function of the process  

	 x(t); 
		   = t2 – t1.

The power spectral density ( )
x

S   of the process ( )x t  is defined as

	
	

1( ) ( ) exp( j ) .
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∞

−∞
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After substitution of Eq. (23) in Eq. (24) one gets

	
	

[ ]21 { } ( ) ( ) ( ),
4 xe eE a S      − + + =

	
(25)

where  is the Dirac’s delta function.
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To evaluate the mean-square value of the equivalent stress amplitude from Eq. 
(25), the theory of energy transformation systems [10] can be utilized. According 
to this theory, two stress states can be regarded as equivalent in terms of fatigue 
life of the material if during the service life the internally and externally dissipated 
energies per unit volume in these states are respectively equal. The counterpart of 
this statement in the frequency domain can be expressed as follows [4, 12].

Two stress states can be regarded as equivalent in terms of fatigue life of the 
material if over the whole frequency range the internally and externally dissipated 
powers per unit volume in these states are respectively equal.

In the considered case, the externally dissipated power is proportional to the 
integral of the power spectral density of the process ( )x t  over the actual frequency 
range. Thus, the following equivalence condition can be postulated

	
	

[ ]21 { } ( ) ( ) ( ) .
4 xe eE a d S d        

∞ ∞
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Hence,
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(27)

Bearing in mind that the amplitude of the narrow-band Gaussian process of 
Eq. (20) follows Rayleigh distribution [13], its k-th statistical moment is [14]
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where: 	 se is the standard deviation of the equivalent stress amplitude,
		  Γ is the gamma function.

Consequently, for k = 2 one obtains

	
2 2{ } 2 .eE a s=

	
(29)

Equating the right-hand sides of Eqs. (27) and (29) gives
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so that
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(31)

As to the frequency e in Eq. (16), the theory of energy transformation systems 
can be used which links the lifetime of dynamically loaded systems also with the 
internally dissipated energy.
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In the high-cycle fatigue regime, the deformations are small and can be 
characterized by a material’s elastic behaviour [15]. Therefore, in order to reflect 
also the dissipative capacity of ductile materials under dynamic loads below the 
yield point, we assume that the Kelvin-Voigt’s models [16, 17]

	 ,E  = + 


  	 (32)

	 ,G  = + 

   	 (33)

are applicable, where
		  ,    are the normal stress and strain;
		  ,    are the shear stress and strain;
		  E, G are the Young and shear moduli;
		  ,   are the coefficients of internal viscous damping of the material.

Following the results obtained in [4] with the aid of the theory of energy 
transformation systems and of the model of Eq. (32), we have the equivalence 
condition

	
2 2{ ( )} { ( )}.e xE t E t = 

 

	
(34)

To Eq. (34), the correlation theory of stochastic processes can be applied. For 
this purpose, we assume that the process ( ) ( )x xt t =  is differentiable in the mean-
square sense [13]. Accordingly, there exists the second order time derivative of its 
autocorrelation function ( ),

x
K   so that

	
2

*
1 2 2( ) { ( ) ( )} ( ).

x xx x
dK E t t K
d    


= = −


  	 (35)

In order to obtain the frequency domain formulation of Eq. (34), we rewrite 
it in terms of the autocorrelation functions as follows

	 * *
1 2 1 2{ ( ) ( )} { ( ) ( )}.e e x xE t t E t t   =   

    	 (36)

By Eqs. (12), (17), (18), (20), and (35), one gets from Eq. (36)
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Fourier transformation of Eq. (37) gives
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To determine the circular frequency of the equivalent stress, Eq. (38) must be 
integrated over the whole frequency range [compare Eqs. (25) and (26)] which 
yields

	
2 2 21 { } ( ) .
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∞

−∞

= ∫ 	 (39)

Combining Eqs. (27) and (39) leads to
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(40)

Finally, the values of the proposed fatigue damage parameter to be displayed 
on fatigue damage maps of structural elements are given by

	

	

( ) ( )1/2 1 /22 /2
22 (1 / 2)

( ) ( ) .
(1 / ) x x

mm
d

m
mx e

T m
D S d S d

K R      
 

−∞ ∞−

−∞ −∞

   Γ +
=    −    

∫ ∫
	

(41)

It is seen that the fatigue damage parameter D is fully determined by the mean 
value and the power spectral density of the original stress as well as by the S-N 
curve and the tensile (or shear) yield strength of the material, and depends linearly 
on the required design life.

If during the service life different loading conditions are envisaged, an appropriate 
fatigue damage cumulation model must be taken into account. Among many 
cumulation models described in the literature, that referred to as the Palmgren-
Miner rule [2, 11] is dominantly used. Its application for the sequence of stationary 
load states is straightforward.

5. Summary

The paper deals with the fatigue damage accumulated in the material of 
engineering elements under random loading conditions. Uniaxial stationary stress 
described in the frequency domain is considered. In order to make use of the S-N 
curve (Wöhler’s curve), an equivalent stress in the form of a Gaussian process is 
determined. As a result, the formula for the expected value of the time to fatique 
failure is derived. A fatique damage parameter related to the required design life is 
defined, the values of which can be displayed on drawings of elements by means of 
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maps. Such a visualization of damage distribution in selected parts of a structure 
may be useful in the design process.
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J. KOLENDA

O wyznaczaniu warstwic uszkodzeń zmęczeniowych przy jednoosiowych 
obciążeniach stochastycznych

Streszczenie. Praca dotyczy uszkodzeń zmęczeniowych elementów maszyn i konstrukcji poddanych 
naprężeniom w zakresie ograniczonej wytrzymałości zmęczeniowej wysokocyklowej. Rozpatrywane 
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jest jednoosiowe naprężenie stacjonarne, które zamodelowano naprężeniem równoważnym w postaci 
procesu Gaussa. Warunki równoważności oparto na teorii systemów transformacji energii. Założono 
znajomość wartości średniej i gęstości widmowej mocy naprężenia. Iloraz założonego czasu eksploatacji 
i wartości oczekiwanej czasu do chwili pęknięcia przyjęto jako parametr uszkodzenia zmęczeniowego, 
którego wartości mogą być użyte do wizualizacji stopnia uszkodzenia zmęczeniowego materiału za 
pomocą warstwic.
Słowa kluczowe: zmęczenie, naprężenie stochastyczne, naprężenie równoważne, parametr uszkodzenia 
zmęczeniowego




