
Biuletyn WAt
Vol. lX, nr 2, 2011

Forming dynamic, self-organizing neural networks
by means of Assembler Encoding

Tomasz Praczyk

Polish Naval academy, Institute of Naval Weapon, Śmidowicza 69 str. , 81-103 Gdynia

Abstract. assembler Encoding is a new neuro-evolutionary method. To date, it has been tested in
such problems as: an optimization problem, a predator-prey problem, and in an inverted pendulum
problem. In all the cases mentioned, assembler Encoding was used to create neural networks with
constant, invariable architecture. To test whether assembler Encoding is able to form other types
of neural networks, next experiments were carried out. In the experiments, the task of assembler
Encoding was to form self-organizing, dynamic neural networks. The networks were tested in the
predator-prey problem. To compare assembler Encoding with other method, in the experiments,
a modified version of standard neuro-evolution was also applied. The results of the experiments are
presented at the end of the paper.
Keywords: self-organizing neural networks, neuro-evolution, predator-prey problem

1. Introduction

assembler Encoding (aE) is a new neuro-evolutionary method. It originates from
the cellular [4] and edge encoding [5], although it also has features common with
Linear Genetic Programming presented, among other things, in [7]. aE represents
artificial Neural Network (aNN) in the form of a program (assembler Encoding
Program – aEP) whose structure is similar to the structure of a simple assembler
program. The task of aEP is to create Network Definition matrix (NDm) containing
all the information necessary to produce aNN. The process of aNN construction
consists of three stages (Fig. 1). First, Genetic algorithm (Ga) produces aEPs. Then,
each aEP creates and fills up NDm. Finally, NDm is transformed into aNN.

To test aE, different experiments were carried out [10, 11, 12]. In the experiments,
the task of aE was to construct aNNs with constant architecture (static aNNs).

118 T. Praczyk

such aNNs do not change over time. Both weights and topology of the static aNNs
are invariable during whole their lifetime. all the experiments showed that aE is
quite effective method for creating such aNNs. However, the question is whether
aE is a universal tool and whether it can also be used to successfully create other
types of aNNs. To answer this question, next experiments were carried out. In the
experiments mentioned, the so-called dynamic aNNs were used [2, 14]. The dynamic
aNNs are self-organizing networks in which weights of interneuron connections
change over time. The magnitude of change depends on the type of Hebb rule
assigned to a given connection and additionally on the value of a learning rate.
The main reason why the dynamic aNNs were selected to tests is their great ability
to transfer from simulation to reality [14] as well as an intention to use them in
a real system to control autonomous underwater vehicles (aUV).

The experiments with the dynamic aNNs were performed in the predator-prey
problem. In the experiments, the goal of aNNs was to control predators responsible
for capturing a fast moving prey behaving according to a simple deterministic strategy.
Due to the difference in movement speed between the predators and the prey, the
former had to cooperate in order to capture the latter. To compare aE with other
method, in the experiments, a co-evolutionary version of the standard neuro-evolution
(sNE) was also tested. In the paper, sNE is the method in which all the information
necessary to construct aNN is stored in a single chromosome and all chromosomes
encoding aNNs are grouped in a single population. In the co-evolutionary version
of the method above, all aNNs evolve in a few separate populations.

The main motivation to use the predator-prey problem as a test bed for aE is
its similarity to the real problem in which the task of a group of aUVs is to guard
an entrance to a harbour and to capture all dangerous underwater objects that can

Fig. 1. creating aNN in aE

119Forming dynamic, self-organizing neural networks by means of Assembler Encoding

appear near the guarded area. The problem described above is the target problem
that is planed to be solved within the confines of the future research.

The paper is organized as follows: section 2 outlines aE; section 3 presents
a variant of aE used to create the dynamic aNNs, section 4 illustrates the results
of the experiments; section 5 is the summary.

2. Fundamentals of Assembler Encoding

In aE, aNN is represented in the form of aEP, which is composed of two
parts, i.e. a part including operations (the code part of aEP) and a part including
data (the memory part of aEP). The task of aEP is to create and to fill in NDm
with values. To this end, aEP uses predefined operations which are run one after
another. When working the operations use data located at the end of aEP. once
the last operation finishes its work, the process of creating NDm is completed. The
matrix is then transformed into aNN.

To create aNN based on NDm, the latter has to include all the information
necessary to create the network. In the simplest case, i.e. for the static aNNs, NDm
takes the form of the classical connectivity matrix (cm) [6]. Elements of such
a matrix determine synaptic weights between neurons. For example, NDm[i, j]
defines the link from neuron i to neuron j. apart from the basic part, NDm can
also include additional columns that describe parameters of neurons, e.g. type of
neuron (sigmoid, radial), bias etc.

2.1. Operations

aEPs can use various operations. The main task of most operations is to
modify NDm. The modification can involve a single element of the matrix or
a group of elements. Figures 2 and 3 present the implementation of two example
operations.

CHGC0 presented in Fig. 2 belongs to the class of binary encoded operations
(encoding operations is explained in further part of the paper). It modifies elements
of NDm located in a column indicated by the parameter p0 and the register R2
(in aE two registers are used, i.e., R1 and R2; the role of the registers is explained
further). an index of the first element updated is located in the register R1 whereas
a total number of elements updated by the operation is stored in the parameter p2.
To modify elements of NDm, CHGC0 uses data from aEP. an index to a memory
cell including the first data used by CHGC0 is stored in p1.

CHG_#2 presented in Fig. 3 belongs to the class of operations encoded in the
form of strings including zeros, ones and the so-called don’t cares denoted as “#”
[1, 3]. The operation modifies elements of NDm indicated in list1 and list2.

120 T. Praczyk

The lists mentioned include numbers of columns and rows of NDm (list1
includes numbers of rows while list2 contains numbers of columns) which, in
turn, indicate elements of the matrix that are updated as a result of execution of the
operation. all possible combinations of columns and rows considered in both lists
determine a set of elements modified by the operation. p0 indicates a place in the
memory part of aEP where new values for updated elements can be found.

In addition to operations whose task is to modify a content of NDm, aE also
uses a jump operation denoted as JMP. The jump makes it possible to repeatedly use
the same code of aEP in different places of NDm. It is possible thanks to changing
values of the registers once the jump is performed. Each jump determines a place in
the code part of aEP where processing should continue. It also determines a number
of jumps and a place in the memory where new values for the registers are placed.
Figure 4 shows the situation in which the jump is run two times. The sequence of
two operations (operation 0 and operation 1) is executed three times, but each
time in a different place of NDm. The first time, the operations are executed for
initial values of the registers. The second time, after the first activation of the jump,
the registers are changed to R1 = 0, R2 = 2. The last execution of the two operations
is connected with the following values of the registers: R1 = 2, R2 = 2.

Fig. 2. Pseudo-code for cHGc0 (NDm[i, j] is element of NDm, Pi i = 1,2 is a value of the ith register,
max_value is scaling value which scales all elements of NDm to range <–1, 1>, D[i]is the ith data,

D.length is a number of memory cells)

Fig. 3. Pseudo-code for CHG_#2

121Forming dynamic, self-organizing neural networks by means of Assembler Encoding

2.2. Evolution in AE

In aE, aEPs and in consequence aNNs are created by means of Ga.
The evolution of aEPs proceeds according to the scheme which is an adaptation
of the idea of evolving co-adapted subcomponents proposed by Potter and De Jong
[8, 9]. To create aEP, the scheme mentioned combines operations and data from
various populations. Each population including chromosomes-operations (each
chromosome-operation encodes the type of operation, e.g. CHGC0, and parameters
of operation; implementations of operations do not evolve) has a number assigned
determining a position of an operation from the population in aEP. In this approach,
the number of operations corresponds to the number of populations including the
chromosomes-operations. Each population delegates exactly one representative
to each aEP. In the beginning, aEPs have only one operation and a sequence of
data. Both the operation and data come from two different populations. Further
populations including operations are successively added if generated aEPs cannot
accomplish progress in performance over an assumed number of co-evolutionary
cycles (the term “co-evolutionary cycle” is used to differ it from the evolutionary
generation taking place inside a single population with operations and data).
The populations with operations and data can also be replaced by newly created
populations. This can happen if the contribution of a given population to aEPs is
considerably less than the contribution of the remaining populations.

The first activity of aEP after having been created is to initiate NDm representing
aNN without interneuron connections. Initially, all NDms contain a minimal

Fig. 4. JmP operation

122 T. Praczyk

acceptable number of rows and columns. This means that all aNNs created at the
beginning of the evolution consist of only input and output neurons. afterwards,
if all aEPs created over an assumed period are not able to generate any satisfactory
solution, NDms are expanded by one row and one column which correspond to
expansion of aNNs by one neuron. The process of growth of NDms continues up
to the moment when all of them represent aNNs of a maximal acceptable number
of neurons.

Fig. 5. aEP encoding scheme

Individual operations in aE can be encoded in two ways. For example, CHGC0
presented in Fig. 2 is encoded in the form of binary string including five blocks
of genes. The first block determines a code of the operation (e.g. binary 00000
indicates that we deal with CHGC0), while the remaining blocks contain the binary
representation of four parameters of the operation.

CHG_#2 (Fig. 3) is represented in a somewhat different way. The encoded
form of this operation resembles classifier from Learning classifier systems [1, 3].
similarity between classifier and the encoded operation results from the use of
the so-called don’t care symbol (“#”) in both cases. Each encoded CHG_# consists
of four blocks of genes. The first single-bit block determines one of two possible
variants of the operation (CHG_#1, CHG_#2, see appendix 1). The second and
the third block indicate location of changes performed by the operation (don’t care
symbol is used for this purpose). The last block specifies the value of the integer
parameter of the operation. The example use of don’t care symbol to locate changes
in NDm is illustrated in Fig. 6.

123Forming dynamic, self-organizing neural networks by means of Assembler Encoding

3. Using AE to form dynamic ANNs

In the previous experiments [10, 11, 12], aE was used to form aNNs with
constant, invariable architecture. To form such aNNs, NDms took the form of the
classical cm. The construction of cm is presented in Fig. 7. The basic part of the
matrix includes synaptic weights of interneuron connections, which do not change
over time. apart from the basic part, the matrix also contains additional columns
describing parameters of neurons, e.g. type of neuron (sigmoid, radial), bias etc.

NDm used to represent a dynamic aNN has somewhat different structure from
that of cm described above. Each NDm, in addition to a topology of aNN, also
defines a process of changes occurring in the network during its lifetime. In total,
NDm includes N rows and Z = 2M + 2 columns (Fig. 8) where N denotes the number
of hidden and output neurons, whereas M is the number of all neurons in aNN.
as before, extra two columns include additional information about neurons.

The main part of NDm used to define a dynamic aNN consists of two sub-
matrices of equal size (N × M). The first sub-matrix determines the topology of
aNN, i.e. it indicates which connections exist in aNN and which do not. Each
element of this sub-matrix unequal to zero informs about a connection between
neurons. The sign of this element determines the sign of the connection, while the
value of the element determines the type of Hebb rule assigned to the connection.
For example, value –0.2 (it is assumed that all elements of NDm are from the range

Fig. 6. Encoding CHG_#2 operation (“#” is interpreted as either 0 or 1)

124 T. Praczyk

<–1, 1>) of element NDM[n, m] (n = 1...N, m = 1...M, neurons are indexed from
0 to M) informs about both the negative connection between mth and
[n + (M – N)]th neuron (there are not connections between input neurons) and
a plain Hebb rule assigned to this connection. In the experiments described further,
five types of Hebb rules were used [2, 14]:

(1) Plain Hebb rule: can only strengthen the synapse proportionally to the
correlated activity of the pre- and post-synaptic neurons

Fig. 7. NDm as connectivity matrix

Fig. 8. NDm used to create dynamic aNN

125Forming dynamic, self-organizing neural networks by means of Assembler Encoding

 (1) ,w w xy∆ = − (1)

where is the synaptic weight, corresponds to change in the weight w, and
x, y are respectively presynaptic and postsynaptic activity of neuron.

(2) Postsynaptic rule: behaves as the plain Hebb rule, but in addition it weakens the
synapse when the postsynaptic node is active, and the presynaptic is not

 (1) (1) .w w x y w xy∆ = − + + − (2)

(3) Presynaptic rule: weakens the synapse when the presynaptic unit is active
but the postsynaptic is not

 (1) (1) .w wx y y w xy∆ = − + + − (3)

(4) Covariance rule: strengthens the synapse whenever the difference between
the activations of the two neurons is less than half their maximum activity,
otherwise the synapse is weakened. In other words, this rule makes the
synapse stronger when the two neurons have similar activity and makes
it weaker when they do not

(1) (,) if (,) 0
(,) otherwise,

w x y x y
w

w x y
− Ψ Ψ >

∆ = Ψ (4)

where (,) tanh(4(1) 2)x y x yΨ = − − − is a measure of a difference between
presynaptic and postsynaptic activity. (,) 0x yΨ > if the difference is higher
than or equal to 0.5 and (,) 0x yΨ < if the difference is smaller than 0.5.

(5) “Zero” rule
 0.w∆ = (5)

Each Hebb rule presented above corresponds to a different value in NDm.
The second sub-matrix of NDm includes learning rates necessary to update

the strength of each synaptic weight. For example, NDM[n, m] = –0.2, where
n = 1...N and m = M...2M, informs that the learning rate used to update the
connection between [m – M]th and [n + (M – N)]th neuron amount to |–0.2|.
If a connection between neurons exists but the learning rate corresponding to this
connection amount to zero, to update the strength of the connection, a default
nonzero value of the learning rate is used.

The Hebb rules from the first part of NDm and the learning rates from its second
part are necessary to determine changes that take place in each interneuron connection.
Each synaptic weight in aNN alters according to the following formula:

1 ,t t

ij ij ij ijw w w−= + ∆ (6)

126 T. Praczyk

where 1,t t
ij ijw w − are synaptic weights between the jth and the ith neuron, respectively,

after and before update and 0 1ij≤ ≤ is the learning rate.
First, once aNN is created, all weights of all nonzero connections are fixed

in some assumed manner, for example at random. Then, synaptic weights change
according to formula (6). all synapses can change the strength but they cannot
change the sign, which is determined permanently in NDm. The synaptic strength
cannot grow indefinitely. all weights are from the range <0, 1>. This is possible
thanks to self-limiting mechanism in all the Hebb rules specified above. an update
of each synaptic weight occurs once an input signal is propagated to output neurons,
i.e. each time a decision has been taken by aNN.

4. Experiments

The main goal of the experiments was to test whether aE can be used to
create simple dynamic, self-organizing aNNs. In the experiments, the task of all
aNNs was to control a set of cooperating predators whose common goal was to
capture a fast moving prey. The experiments were performed in a configuration
with one prey and three chasing predators. The prey behaved according to a simple
deterministic strategy, whereas the predators were controlled by a single aNN. In
the experiments, the following variants of aE were tested: aEPs consisting of binary
encoded operations (aEPs01, e.g. CHGC0), aEPs including CHG_# operations
(aEPs#), and aEPs containing both types of operations (aEPs01#).

Fig. 9. co-evolutionary version of sNE used in experiments

127Forming dynamic, self-organizing neural networks by means of Assembler Encoding

apart from aE, for the purpose of comparison, a modified version of sNE
was also used in the experiments. sNE means here the method in which all the
information necessary to create a network is stored in a single chromosome. In the
case of the dynamic aNNs, the chromosome mentioned has to include genes
assigning the Hebb rules and the learning rates to connections and parameters to
neurons. all the chromosomes encoding aNNs are grouped in a single population.
In the modified version of sNE, used in the experiments, the dynamic aNNs evolved
according to the scheme proposed by Potter and De Jong, i.e. in a similar way as
aEPs in aE. Each chromosome encoding aNN were divided into three separate
parts of more or less the same length (the number of the parts were determined
arbitrary by the author) and each part evolved in a separate population.

4.1. Environment

The predators and the prey lived in a common environment. To represent
the environment, 20 × 20 square was used. The square was without any obstacles
but with two barriers located on its left and right-hand side. Both barriers caused
the predators as well as the prey to move right or left only to the point at which
they reached one of the barriers. attempts to move further in the direction of the
barrier ended up in failure. In order to ensure infinite space for the predators and
the prey and for their struggles, the environment was opened at the bottom and at
the top. This means that every attempt of movement beyond upper or lower border
of the square caused the object, making such an attempt to move to the opposite
side of the environment. as a result, the simple strategy of predators, consisting
in chasing the prey, did not work. In such situation, the prey, in order to evade
predators, could simply escape upwards or downwards.

4.2. Residents of the artificial world

In the experiments, three predators and one prey coexisted in the artificial
environment. The predators were controlled by aNN produced by aEP. They
could select five actions: to move in North, south, West, East direction or to stand
still. The length of the step made by each predator was 1, while the step made by
the prey amounted either to 2 or to 1. In order to capture the prey, the predators
had to cooperate. Their speed was either two times lower or the same as the speed of
the escaping prey so they could not simply chase the prey to capture it. The prey was
captured if the distance between it and the nearest predator was lower than 2.

In the experiments, the predators could see the whole environment. The predators
based on the decision which actions to select on the prey’s relative location with
reference to each of them. In order to perform the task, aNN controlling the predators
had to possess six inputs and three outputs. The outputs provided decisions to the

128 T. Praczyk

predators whereas the inputs informed them about prey’s location in relation to
each of them.

In the experiments, two types of prey were used, i.e. a simple prey and an
advanced prey. as for the simple prey, it was controlled by a simple algorithm which
forced it to move directly away from the nearest predator but solely in the situation
when the distance between it and the nearest predator was lower than or equal
to 5. In the remaining cases, i.e. when no predator was closer to the prey than the
assumed distance, the prey did not move. In the situation when the selected prey’s
action could cause hitting the barrier, another move was chosen. alternative move
prevented from hitting the wall, and at the same time, it maximally increased the
distance between the prey and the nearest predator. The prey, when was running
away could select four actions: to move in North, south, West or East direction.
a strategy of the simple prey is presented below:

()

()

()()
StandStill if , 5

arg max , ,arg min , otherwise,

p P

p Pa A

d p s
s

D s a d p s

∈

∈∈

 ∀ >
=
 (7)

where: P – is the set of predators;
 A – is the set of actions of prey (a = {standstill,North,south,West,East});

Fig. 10. artificial world in which task of predators was to capture prey

129Forming dynamic, self-organizing neural networks by means of Assembler Encoding

 d(p, s) – is the distance between prey and the predator p in state of the
 environment s;

 D(s, a, p) – is the distance between prey and the predator p in state of
 environment which is direct consequence of the action a performed
 by prey in the state s.
making decision, the advanced prey, unlike its simpler counterpart, always

took into consideration the location of all predators situated close to it. actions
performed by the advanced prey always maximized the average distance between
the prey and all the predators that were close to it. other aspects of behaviour of the
advanced prey, i.e. behaviour near the barrier, behaviour away from the predators,
and actions which the prey could perform in each step, were the same as in the case
of the simple prey. a strategy of the advanced prey is presented below:

()

()

() ()
()55

StandStill if , 5

1arg max , , otherwise,

p P

a A p P s

d p s

s
D s a p

P s

∈

∈ ∈

 ∀ >
=

∑ (8)

where: () (){ }5 , , 5 .P s p P d p s= ∈ ≤

4.3. Neural controllers

In the experiments, feed-forward aNNs (FFaNN) with Hebb self-organization
and recurrent aNNs (raNN) with Hebb self-organization were tested. all aNNs had
six inputs and three outputs. The number of outputs corresponded to the number
of predators. In turn, the number of inputs was twice the number of predators.
Each output gave commands to one predator. In turn, each input informed about
vertical or horizontal distance between the prey and one of the predators.

In the experiments, aNNs could grow only to a certain limit. at first, networks
including minimal acceptable number of neurons were created. If the evolution
could not produce any successful aNN within some assumed period, all aNNs
were expanded by one neuron. This procedure was continued up to the moment
when all aNNs included 15 neurons, i.e., 6 input neurons, 6 hidden and 3 output
neurons. In the case when even fifty-neuron aNNs could not grasp the prey in all
investigated situations, the evolutionary process was stopped.

4.4. Parameters of evolutionary process

In all the experiments with sNE, canonical Ga (cGa) [3] was used. The same
algorithm was also applied, in the experiments with aE, to form data for aEPs.
operations for aEPs were produced by means of Eugenic algorithm (Eua) [13].

130 T. Praczyk

all chromosomes used in the experiments consisted of 7-bit blocks of genes.
Each chromosome-operation consisted either of five blocks of binary genes (one
block for code of an operation and the remaining four blocks for parameters of
the operation, e.g. CHGC0) or of four blocks of genes including zeros, ones and
don’t cares (one block for code of an operation, two blocks for encoded lists and
the last forth block for integer parameter of the operation, e.g. CHG_#1). The list
of applied operations is presented at the end of the paper (appendix 1). The length
of chromosomes from sNE was dependent on the size of aNN. For example,
aNN consisting of 12 neurons was represented in the form of three chromosomes
consisting of fifty two blocks of binary genes. chromosomes-data could change the
length during consecutive co-evolutionary cycles. In order to make such a change
possible, cGa in addition to crossover and mutation used a cut-splice operator.
The implementation of crossover, used in the experiments, always produced
offspring of the same length as parents. The cut-splice operator, which was always
activated after crossover and mutation, modified the size of a chromosome through
adding or removing a single block of genes (single data) from the same end of
the chromosome. In the experiments, the chromosomes-data could maximally
contain 20 data, i.e. 20 7-bit blocks of genes. Each use of an excessive number of
data caused drastic decrease in fitness of the aEP. In the experiments, aEPs could
include 12 operations. Initially, each aEP contained one operation and one set
of data from two different populations. consecutive populations with operations
were added every 5000 of co-evolutionary cycles if generated aEPs were not
able to achieve progress in performance within this period. Populations with
operations and data could be also replaced by newly created populations when
the contribution of a substituted population to created aEPs was considerably less
than the contribution of the remaining populations. The same procedure was also
applied in sNE. The contribution of a population was measured as average fitness
of individuals belonging to that population. The remaining values essential for the
experiments are the following:

size of each population: 20 individuals (aE), 40 (sNE),•	
number of co-evolutionary cycles for one fixed structure of aNN: 50 000 •	
(afterwards, all aNNs were expanded by one neuron and evolutionary
process started again),

Parameters of cGa:
crossover probability: 0.7,•	
per-bit mutation probability: 0.01,•	
cut-splice probability: 0.1 (in chromosomes-data),•	

Parameters of Eua:
selection noise: 0.01, 0.2,•	
creation rate: 0.01, 0.2,•	
restriction operator: on.•	

131Forming dynamic, self-organizing neural networks by means of Assembler Encoding

4.5. Evaluation process

In order to evaluate aNNs ten different scenarios were used. at first, each aNN
was tested in the scenario no. 1. If the predators controlled by aNN could not capture
the prey during an assumed period, the test was stopped and the network received
an appropriate evaluation. The evaluation depended on the distance between the
prey and the nearest predator. However, if the predators grasped the prey, aNN
was run in a next scenario. In the experiments, the predators could perform 100
steps before the scenario was interrupted.

Fig. 11. Initial locations of prey

The scenarios used in the experiments differed in the initial position of the
prey, in the length of step of the prey and in the type of the prey applied (simple
or advanced). consecutive scenarios were more and more difficult. at first, the
predators had to capture the simple prey that was as fast as them. The predators,
which passed the first exam, had to pit against the simple prey that was twice
faster than them. In the next step, the speed of the prey was decreased once again.
However, this time the predators had to face the advanced prey which took better
decisions than its predecessor. In the last stage, the predators which coped with all
earlier scenarios had to capture the advanced, fast prey. In all the scenarios, starting
positions for all three predators were the same. The predators always started from
position (0,0). Below, described are all eight scenarios:

scenario no 1: simple prey (20,5), step of prey = 1,•	
scenario no 2: simple prey(10,8), step of prey = 1,•	
scenario no 3: simple prey (15,3), step of prey = 2,•	
scenario no 4: simple prey (0,10), step of prey = 2,•	

132 T. Praczyk

scenario no 5: advanced prey (16,0), step of prey = 1,•	
scenario no 6: advanced prey (2,15), step of prey = 1,•	
scenario no 7: advanced prey (10,19), step of prey = 2,•	
scenario no 8: advanced prey (4,10), step of prey = 2,•	
scenario no 9: advanced prey (10,10), step of prey = 2,•	
scenario no 10: advanced prey (20,0), step of prey = 2.•	

To evaluate aNNs, the following fitness function was used:

()
1

,
n

i
i

f ANN f
=

= ∑
 (9)

()
()

th
max 100

th

min , prey not captured in scenario

100 prey captured in scenario

0 prey not captured in the previous scenario,

i

p P

ii
captured

d d p s i

mf f ia

∈
 −

 −= +
 (10)

where: fi is the reward received in the ith scenario;
 dmax is the maximum distance between two points in environment;
 si

100 is the end state in ith scenario;
 fcaptured is the reward for grasping prey in single scenario (in the experiments

 fcaptured = 100);
 mi is the number of steps which predators needed to capture prey (mi < 100);
 a – this value prevents situation in which partial success is better than

 success in all scenarios;
 n is the number of scenarios.

The total fitness of each aNN is a sum of rewards from the scenarios in which the
network has taken part. The reward for a scenario depends on the chase result. In the
case of success, aNN obtains an extra fitness for grasping the prey and additionally
a reward reversely proportional to the number of steps which the predators had to
make to capture the prey. In the case of failure, aNN obtains fitness proportional
to the distance between the prey and the nearest predator.

4.6. Experimental results

30 evolutionary runs were performed for each aNN encoding method and
for each type of aNN. The results of the experiments are presented in Table 1. For
the purpose of comparison, the results of the previous experiments with the static
aNNs [10], are also included in the table (the previous experiments were carried
out in the same conditions as the experiments reported in the paper).

133Forming dynamic, self-organizing neural networks by means of Assembler Encoding

Generally, the experiments showed that aE can be successfully used to create the
dynamic aNNs. However, they also showed that the dynamic aNNs are considerably
much harder to generate than the static ones. as it turned out, the only successful
dynamic aNNs* were produced by means of aEPs01.

Table 1
Experimental results; column (1)-average fitness (best fitness); column (2)-% of successful aNNs;
column (3)-average number of neurons in successful aNN (minimal number of neurons);
column (4)-average length of successful aEP, number of neurons+number of data (shortest
aEP); column (5)-average number of co-evolutionary cycles necessary to generate successful
aEP (minimal number); e.g. fitness = 850 means that prey was captured in eight scenarios;

results of the previous experiments are marked in grey

(1) (2) (3) (4) (5)

static FFaNN (aEP01) 1028.14
(1069.75) 93% 11.5

(10)
4.9 + 13.8
(2 + 21)

196834.3
(6614)

static FFaNN (aEP#) 915.24
(1081.76) 73% 14.6

(12)
6.2 + 15.4
(3 + 14)

335692.4
(158808)

static FFaNN
(aEP01#)

998.98
(1088.65) 80% 13.2

(11)
5 + 13.3
(3 + 12)

286951.7
(108456)

dynamic FFaNN
(aEP01)

836.79
(1055.66) 28% 14.7

(12)
5.8 + 14.5

(5 + 9)
347053.8
(179808)

dynamic FFaNN
(aEP#)

480.41
(563.38) 0%

dynamic FFaNN
(aEP01#)

546.1
(659.27) 0%

dynamic FFaNN
(sNE)

706.78
(954.12) 0%

dynamic raNN
(aEP01)

728.07
(1065.33) 21% 14.5

(12)
5.7 + 15.7
(5 + 14)

339651.4
(183421)

dynamic raNN
(aEP#)

362,04
(441.32) 0%

dynamic raNN
(aEP01#)

489.59
(648.32) 0%

dynamic raNN
(sNE)

621,65
(893.33) 0%

only 28% dynamic FFaNNs and 21% dynamic raNNs were successful in this
case. It is three times worse result compared to the same method used to create
static FFaNNs. The remaining encoding methods did not generate even one aNN

* aNN which captured the prey in all tested scenarios.

134 T. Praczyk

effective in all ten scenarios. The most problems with generating effective aNNs
had aEPs#. In most cases, aNNs produced by aEPs# had difficulties even with
scenarios in which the simple prey was used. creating the static aNNs was much
easier for aEPs#. 73% static FFaNNs created by means of aEPs# were successful.
Even though aEPs01# generated somewhat better dynamic aNNs than aEPs#, all
of them were significantly less effective than aNNs produced by aEPs01. as before,
aEPs01# were much more effective in creating the static aNNs. 80% static FFaNNs
created by means of aEPs01# were successful. sNE appeared to be better solution
than aEPs# and aEPs01#. Nevertheless, most dynamic aNNs generated by means
of sNE were strongly unsatisfactory. With regard to the successful aNNs, generated
during the tests, most of them included maximal acceptable number of neurons,
i.e. 15 neurons. The smallest successful dynamic aNNs contained 12 neurons.

Fig. 12. (a) Example aEP01 which created successful dynamical FFaNN, (b) encoded form of aEP
presented in point (a)

Fig. 13. successful dynamic FFaNN created by aEP presented in Fig. 12 after removing all unnecessary
neurons and connections (aNN without modifications included 12 neurons)

135Forming dynamic, self-organizing neural networks by means of Assembler Encoding

In most cases, aNNs used only two predators to grasp the prey. The third predator
usually moved in one direction and did not take part in the chase. The first activity
to capture the prey was always to press the prey against one of the barriers. In the
second phase of the hunt, one predator usually patrolled a sector of the environment
near the barrier walking forth and back, right and left. It was careful enough not to
touch the barrier. at the same time, the second predator moved along the barrier
and forced the prey to escape in the direction of the first predator.

Fig. 14. (a) Example aEP01 which created successful dynamic raNN; (b) encoded form of aEP
presented in point (a); (c) NDm generated by aEP presented in point (a) and (b)

Fig. 15. (a) example behaviour of predators and prey in scenario no. 7 (neuro-controller: FFaNN
presented in Fig. 13); (b) example behaviour of predators and prey in scenario no. 8 (neuro-controller:
raNN whose NDm is presented in Fig. 14c). circles indicate initial positions of predators and prey
(black circle – prey, circle with vertical stripes – predators), round symbols with diagonal lines denote
final positions, arrowed lines indicate directions of movement (solid line – prey, dashed or dotted lines

– predators) whereas black boxes determine time of occurrence of individuals in a given place

136 T. Praczyk

In the second stage of the chase, i.e. after pressing the prey against the barrier,
sometimes we also observed other strategy of the predators than the one described
above. In the second of the strategies, the predator waiting for the prey lurked
near the same barrier. In turn, the second predator or as it is depicted in Fig. 15
the second and the third predators moved along the barrier but at some distance
from it. They forced the prey to escape in the direction of the first of the predators
mentioned, i.e., in the direction of the predator waiting on the opposite side of the
environment. Both strategies of the predators presented above seem very simple,
nevertheless, as the experiments showed they also turned out to be very effective.

5. Summary

The paper presents usage of aE to create the dynamic aNNs with Hebb self-
organization. In order to find out capabilities of aE to create such aNNs, experiments
in the predator-prey problem300

 were carried out. In the experiments, the task of aNNs was to supervise a group
of predators whose common goal was to capture a fast moving prey behaving
according to a simple strategy. In the experiments, three variants of aE were used,
i.e. aEPs01, aEPs#, and aEPs01#. moreover, the method called standard neuro-
evolution was also tested. The research showed that aE is able to create simple
dynamic aNNs. However, creating such aNNs appeared to be considerably harder
than generating the static aNNs. aEPs01 turned out to be a variant of aE which
generated the most effective the dynamic aNNs. The remaining methods tested
in the experiments were significantly less effective.

Artykuł wpłynął do redakcji 19.04.2010 r. Zweryfikowaną wersję po recenzji otrzymano w listopadzie
2010 r.

rEFErENcEs

 [1] m. Butz, Rule-based Evolutionary Online Learning Systems: Learning Bounds, Classification,
and Prediction, IlliGaL report, no. 2004034, University of Illinois, 2004.

 [2] D. Floreano, J. Urzelai, Evolutionary robots with online self-organization and behavioural
fitness, Neural Networks, 13, 2000, 431-443.

 [3] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, addison
Wesley, reading, massachusetts, 1989.

 [4] F. Gruau, Neural network Synthesis Using Cellular Encoding and The Genetic Algorithm, PhD
Thesis, Ecole Normale superieure de Lyon, 1994.

 [5] s. Luke, L. spector, Evolving Graphs and Networks with Edge Encoding: Preliminary Report,
Late Breaking Papers at the Genetic Programming 1996 conference stanford University July
28-31, stanford University, 1996, 117-124.

 [6] G. F. miller, P. m. Todd, s. U. Hegde, Designing Neural Networks Using Genetic Algorithms,
Proceedings of the Third International conference on Genetic algorithms, 1989, 379-384.

137Forming dynamic, self-organizing neural networks by means of Assembler Encoding

 [7] P. Nordin, W. Banzhaf, F. Francone, Efficient Evolution of Machine Code for {CISC} Archi-
tectures using Blocks and Homologous Crossover, advances in Genetic Programming III, mIT
Press, 1999, 275-299.

 [8] m. Potter, The Design and Analysis of a Computational Model of Cooperative Coevolution, PhD
thesis, George mason University, 1997.

 [9] m. a. Potter, k. a. De Jong, Cooperative coevolution: An architecture for evolving coadapted
subcomponents, Evolutionary computation, 8(1), 2000, 1-29.

[10] T. Praczyk, Evolving co-adapted subcomponents in assembler encoding, International Journal
of applied mathematics and computer science, 17(4), 2007, 549-563.

[11] T. Praczyk, Modular networks in Assembler Encoding, computational methods in science and
Technology, cmsT 14(1), 2008, 27-38.

[12] T. Praczyk, Using assembler encoding to solve the inverted pendulum problem, computing and
Informatics (in press)

[13] J. W. Prior, Eugenic Evolution for Combinatorial Optimization, master’s thesis Tr aI98-268,
The University of Texas at austin, 1998.

[14] J. Urzelai, D. Floreano, Evolution of Adaptive Synapses: Robots with Fast Adaptive Behaviour
in New Environments, Evolutionary computation, 9(4), 2001, 495-524.

A list of operations used in the experiments

Binary encoded operations:
CHG – Update of an element. Both the new value and address of the element are

 located in parameters of the operation.
CHGC0 – see page 3.
CHGC1 – Update of a certain number of elements in a column. an index of the column,

 an index of the first element in the column, the number of changed elements
 and a new value for the column’s elements, the same for all elements,
 are located in parameters of the operation.

CHGC2 – Update of a certain number of elements in a column. a new value for each
 element is a sum of the operation’s parameter and the current value of the
 element. The second parameter of the operation is an index of the column.
 The third and fourth parameters of the operation determine the number
 of changed elements and index of the first element in the column, respectively.

CHGC3 – a number of elements from one column are transferred to another column.
 Both columns are indicated by parameters of the operation. The number of
 transferred elements and index of the first element in the source column are
 also included in parameters of the operation.

CHGC4 – Update of a certain number of elements in a column. a new value for each
 element is a sum of the current value of the element and a value from data
 part of aEP. an index of the column, an index of the first element in the
 column, the number of changed elements, and a pointer to data, where
 ingredients of individual sums are memorized, are located in parameters
 of the operation.

138 T. Praczyk

CHGR0 – like CHGC0 but an update refers to a row of NDm.
CHGR1 – like CHGC1.
CHGR2 – like CHGC2.
CHGR3 – like CHGC3.
CHGR4 – like CHGC4.
CHGM0 – change of a block of elements. The elements are updated in columns, in turn,

 one after another, starting from an element pointed by parameters of the
 operation. The number of changed elements and a place in the memory
 where new values for the elements are located are determined by parameters
 of the operation.

CHGM1 – like CHGM0, but a new value for each element is a sum of its current
 value and parameter of the operation.

CHGM2 – like CHGM0, but a new value for each element is a sum of its current value
 and a value from the data part of aEP. The number of changed elements and
 a place in the memory where arguments of individual sums are located
 – are determined by parameters of the operation.

JMP – Jump operation. The number of jumps, a pointer to a next operation and new
 values for the registers are located in parameters of the operation.

Operations encoded in the form of strings including zeros, ones and don’t cares:
CHG_#1 – Update of a set of elements in NDm. all the updated elements have the same

 value.
CHG_#2 – see page 3.

T. Praczyk

Tworzenie sieci neuronowych z samoorganizacją Hebba za pomocą
Kodowania Asemblerowego

Streszczenie. kodowanie asemblerowe jest metodą neuro-ewolucyjną, która do tej pory stosowana
była wyłącznie do konstrukcji sieci neuronowych o stałej, nie zmiennej w czasie architekturze. W celu
sprawdzenia skuteczności metody w tworzeniu innych typów sieci neuronowych, przeprowadzono
szereg eksperymentów. W ich trakcie zadaniem kodowania asemblerowego była konstrukcja reku-
rencyjnych oraz jednokierunkowych sieci neuronowych z samoorganizacją Hebba. Tworzone sieci
wykorzystywane były do sterowania zespołem „drapieżców”, których celem było pochwycenie szybko
poruszającej się „ofiary” (predator-prey problem) postępującej zgodnie z pewną prostą strategią.
Wyniki kodowania asemblerowego uzyskane w trakcie badań porównano z osiągami innej metody
neuro-ewolucyjnej.
Słowa kluczowe: sieci neuronowe, neuro-ewolucja, problem drapieżca–ofiara

