PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of buffer layers on performance of organic photovoltaic devices based on copper phthalocyanine-perylene dye heterojunction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the results of research on the systems formed from thin films of copper phthalocyanine (CuPc), N-N'-dimethylperylene-3,4,9,10-dicarboximide (MePTCDI), electrodes of ITO and Ag, and from buffer layers: MoO₃ at ITO and BCP at Ag. We have observed the effect of each buffer layer on voltage dependence of dark current and photocurrent, and on open circuit voltage-light intensity relationship. The system with both buffer layers exhibited the highest values of open circuit voltage and fill factor. The buffer layers improve transport of charge carriers within near-electrode regions, reduce dissociation of excitons on electrodes and reveal processes of charge carrier generation and recombination within the CuPc/MePTCDI junction.
Twórcy
autor
autor
  • Department of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland, ryszard@mif.pg.gda.pl
Bibliografia
  • [1] See: http://www.heliatek.com; http//www.solarmer.com
  • [2] B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors”, Prog. Photovoltaics: Res. Appl. 15, 659-676 (2007).
  • [3] M. Riede, T. Mueller, W. Tress, R. Schueppel, and K. Leo, “Small-molecule solar cells-status and perspectives”, Nanotechnology 19, 1-12 (2008).
  • [4] A. W. Hains, Z. Liang, M.A. Woodhouse, and B. Greeg, “Molecular semiconductors in organic photovoltaic cells”, Chem. Rev., 110, 6689-6735 (2010).
  • [5] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183-185 (1986).
  • [6] D. Wöhrle and D. Meissner, “Organic solar cells”, Adv. Mater. 3, 129-138 (1991).
  • [7] D. Wöhrle, L. Kreienhoop, G. Schnurpfeil, J. Elbe, B. Tennigkeit, S. Hiller, and D. Schlettwein, “Investigations of n/p-junction photovoltaic cells of perylenetetracarboxylic acid diimides and phthalocyanines”, J. Mater. Chem. 5, 1819-1829 (1995).
  • [8] R. Signerski, G. Jarosz, and J. Godlewski, “Photoelectric properties of heterojunctions formed from di-(pyridyl)-pery-lenetetracarboxylic diimide and copper phthalocyanine or pentacene”, Synthetic Met. 94, 135-137 (1998).
  • [9] P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys. 93, 3693-3723 (2003).
  • [10] W. Hu and M. Matsumura, “Structure and thickness dependence of p-n heterojunction solar cells based on copper phthalocyanine and perylene pigments”, J. Phys. D: Appl. Phys. 37, 1434-1438 (2004).
  • [11] G. Jarosz, “Small signal spectra of complex capacitance obtained on organic heterojunction formed from copper phthalocyanine and perylene dye”, Thin Solid Films 516, 8984-8987 (2008).
  • [12] M. Vogel, S. Doka, Ch. Breyer, M. Ch. Lux-Steiner, and K. Festiropoulos, “On the function of a bathocuproine buffer layer in organic photovoltaic cells”, Appl. Phys. Lett. 89, 163501-1-3 (2006).
  • [13] R. Signerski, “Photovoltaic properties of organic heterojunctions formed from tetracene and zinc hexadecafluorophthalo-cyanine”, Mater. Sci.-Poland 27, 763-768 (2009).
  • [14] J. Huang, J. YU, H. Lin, and Y. Jiang, “Detailed analysis of bathocuproine layer for organic solar cells based on copper phthalocyanine and C60”, J. Appl. Phys. 105, 073105-1-5 (2009).
  • [15] H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans, P. Heremans, and J. Genoe, “On the role of bathocuproine in organic photovoltaic cells”, Adv. Funct. Mater. 18, 3686-3691 (2008).
  • [16] T. Sakurai, S. Toyoshima, H. Kitazume, S. Masuda, H. Kato, and K. Akimoto, “Influence of gap states on electrical properties at interface between bathocuproine and various types of metals”, J. Appl. Phys. 107, 043707-1-6 (2010).
  • [17] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, and S. R. Forrest, “Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells”, Appl. Phys. Lett. 94, 023307-1-3 (2009).
  • [18] D. Y. Kim, G. Sarasquerta, and F. So, “SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer”, Sol. Energ. Mat. Sol. C93, 1452-1456 (2009).
  • [19] X. Tong, B.E. Lassiter, and S.R. Forrest, “Inverted organic photovoltaic cells with high open-circuit voltage”, Org. Electron. 11, 705-709 (2010).
  • [20] L. Cattin, F. Dahou, Y. Lare, M. Morsli, R. Tricot, S. Houari, A. Mokrani, K. Jondo, A. Khelil, K. Napo, and J. C. Bernéde, “MoO3 surface passivation of the transparent anode in organic solar cells using ultrathin films”, J. Appl. Phys. 105, 034507-1-7 (2009).
  • [21] M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films”, Appl. Phys. Lett. 95, 123301-1-3 (2009).
  • [22] Irfan, H. Ding, Y. Gao, D. Y. Kim, J. Subbiah, and F. So, “Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor”, Appl. Phys. Lett. 96, 073304-1-3 (2010).
  • [23] Y. Vertsimakha, P. Lutsyk, K. Palewska, J. Sworakowski, and O. Lytvyn, “Optical and photovoltaic properties of thin films of N,N’-dimethyl-3,4,9,10-perylenetetracarboxylic acid diimide”, Thin Solid Films 515, 7950-7957 (2007).
  • [24] P. I. Djurovich, E. I. Mayo, S. R. Forrest, and M. E. Thompson, “Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors”, Org. Electron. 10, 515-520 (2009).
  • [25] I. G. Hill, A. Kahn, Z. G. Soos, and R. A. Pascal, Jr., “Charge-separation energy in films of đ-conjugated organic molecules”, Chem. Phys. Lett. 327, 181-188 (2000).
  • [26] D. R. T. Zahn, G. N. Gavrila, and M. Gorgoi, “The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission”, Chem. Phys. 325, 99-112 (2006).
  • [27] R. Signerski, “The photovoltaic effect in a heterojunction of molybdenyl phthalocyanine and perylene dye”, J. Non-Cryst. Solids 352, 4319-4324 (2006).
  • [28] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
  • [29] R. Signerski, “On the light intensity dependence of short-circuit current of bilayer organic photovoltaic cells”, J. Non-Cryst. Solids 354, 4465-4468 (2008).
  • [30] D. Cheyns, J. Poortmans, and P. Heremans, “Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells”, Phys. Rev. B77, 165332-1-10 (2008).
  • [31] A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, and V. Dyakonov, “S-shaped current-voltage characteristics solar devices”, Phys. Rev. B82, 115306-1-8 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0007-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.