PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanostructure model and optical properties of InAs/GaAs quantum dot in vertical cavity surface emitting lasers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We apply 8.band k.p model to study InAs/GaAs quantum dots (QDs). The strain was calculated using the valence force field (VFF) model which includes the four nearest.neighbour interactions. For the optical properties, we take into account both homogeneous and non.homogeneous broadening for the optical spectrum. Our simulation result is in good agreement with the experimental micro.photoluminescence (µm-PL) result which is from InAs/GaAs QD vertical cavity surface emitting lasers (VCSELs) structure wafer at room temperature. Accordingly, our simulation model is used to predict the QD emission from this QD.VCSELs structure wafer at different temperature ranging from 200–400 K. The simulation results show a decrease of 41 meV of QDground state (GS) transition energy from 250–350 K. The changes ofQDGS transition energy with different temperature indicate the possible detuning range for 1.3.µm wave band QD-VCSELs applications without temperature control. Furthermore, QD differential gain at 300 K is computed based on this model, which will be useful for predicting the intrinsic modulation characteristics of QD-VCSELs.
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
  • School of Electrical and Electronic Engineering, S1-B2c-21, 50 Nanyang Ave., Nanyang Technological University, 639798 Singapore, Republic of Singapore, chen0498@e.ntu.edu.sg
Bibliografia
  • [1] W. Seifert, N. Carlsson, M. Miller, M. E. Pistol, L. Samuelson, and L. R. Wallenberg, “In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode”, Prog. Cryst. Growth Ch. 33, 423-471 (1996).
  • [2] B. G. Levi, “Researchers vie to achieve a quantum-dot laser”, Phys. Today 49, 22-24 (1996).
  • [3] L. W. Wang, J. Kim, and A. Zunger, “Electronic structures of [110]-faceted self-assembled pyramidal InAs/GaAs quantum dots”, Phys. Rev. B59, 5678-5687 (1999).
  • [4] D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs”, Phys. Rev. B50, 11687-11692 (1994).
  • [5] B. J. Spencer and J. Tersoff, “Equilibrium shapes and properties of epitaxially strained islands”, Phys. Rev. Lett. 79, 4858-4861 (1997).
  • [6] G. S. Solomon, J. A. Trezza, and J. S. Harris, Jr., “Effects of monolayer coverage, flux ratio, and growth rate on the island density of InAs islands on GaAs”, Appl. Phys. Lett. 66, 3161-3163 (1995).
  • [7] M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots”, Phys. Rev. B54, R2300-R2303 (1996).
  • [8] C. Pryor, M. E. Pistol, and L. Samuelson, “Electronic structure of strained InP/Ga0.51In 0.49P quantum dots”, Phys. Rev. B56, 10404-10411 (1997).
  • [9] N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kopev, Zh. I. Alferov, U. Richter, P. Werner, U. Goselle, and J. Heydenreich, “Low threshold, large To injection laser emission from (InGa)As quantum dots”, Electron. Lett. 30, 1416-1417 (1994).
  • [10] Semiconductor Quantum Dots, edited by A. Zunger, special issue of MRS Bull. 23, 15-15 (1998).
  • [11] N. N. Ledentsov, F. Hopfer, and D. Bimberg, “High-speed quantum-dot vertical-cavity surface-emitting lasers”, Proc. IEEE 95, 1741-1756 (2007).
  • [12] J. Y. Marzin and G. Bastard, “Calculation of the energy-levels in InAs/GaAs quantum dots”, Solid State Commun. 92, 437-442 (1994).
  • [13] M. A. Cusack, P. R. Briddon, and M. Jaros, “Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots”, Phys. Rev. B56, 4047-4050 (1997).
  • [14] M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers”, Phys. Rev. B61, 7595-7603 (2000).
  • [15] J. Chen, W. J. Fan, Q. Xu, X. W. Zhang, S. S. Li, and J. B. Xia, “Electronic structure and optical gain saturation of InAs1-xNx/GaAs quantum dots”, J. Appl. Phys. 105, 123705 (2009).
  • [16] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors”, J. Appl. Phys. 94, 3675-3696 (2003).
  • [17] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys”, J. Appl. Phys. 89, 5815-5875 (2001).
  • [18] H. T. Jiang and J. Singh, “Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study”, Phys. Rev. B56, 4696-4701 (1997).
  • [19] W. H. Press, B. P. Flanner, S. A. Teukolsky, and W. T. Veteering, Numerical Recipes, Cambridge University Press, New York, 1989.
  • [20] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, “Comparison of two methods for describing the strain profiles in quantum dots”, J. Appl. Phys. 83, 2548-2554 (1998).
  • [21] Y. Ding, W. J. Fan, B. S. Ma, D.W. Xu, S.F. Yoon, S. Liang, L. J. Zhao, M. Wasiak, T. Czyszanowski, and W. Nakwaski, “Micro-photoluminescence investigation of InAs quantum dot active region in 1.3-μm VCSEL structure”, J. Appl. Phys. 108, 073111 (2010).
  • [22] V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, “Quantum dot VCSELs”, Phys. Status Solidi A 202, 396-402 (2005).
  • [23] Y. Ding, D. I. Nikitichev, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Quantum-dot external-cavity passively mode-locked laser with high peak power and pulse energy”, Electron. Lett. 46, 1516-1518 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0007-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.