PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wavelet analysis of polarization maps of polycrystalline biological fluids networks

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.
Twórcy
  • Correlation Optics Department, Chernivtsi National University, 2 Kotsyubinsky Str., 58012 Chernivtsi, Ukraine, yuriyu@gmail.com
Bibliografia
  • [1] A. G. Ushenko and V. P. Pishak, “Laser polarimetry of biological tissue: Principles and applications”, in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, Vol. 1, pp. 93-138, edited by V. V. Tuchin, Kluwer Academic Publishers, 2004.
  • [2] A. G. Ushenko, “Polarization structure of laser scattering fields”, Opt. Eng. 34, 1088-1093 (1995).
  • [3] X. Wang, G. Yao, and L. V. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose”, Appl. Opt. 41, 792-801 (2002).
  • [4] A. G. Ushenko, “Laser diagnostics of biofractals”, Quantum Electron. 29, 1078-1084 (1999).
  • [5] S. Jiao, G. Yao, and L. V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography”, Appl. Opt. 39, 6318-6324 (2000).
  • [6] S. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography”, Opt. Lett. 27, 101-103 (2002).
  • [7] A. G. Ushenko, “The vector structure of laser biospeckle fields and polarization diagnostics of collagen skin structures”, Laser Phys. 10, 1143-1149 (2000).
  • [8] S. G. Demos and R. R. Alfano, “Optical polarization imaging”, Appl. Opt. 36, 150-155 (1997).
  • [9] A. G. Ushenko, “The vector structure of laser biospeckle fields and polarization diagnostics of collagen skin structures”, Laser Phys. 10, 1143-1149 (2000).
  • [10] A. G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces”, Opt. Spectrosc. 92, 227-229 (2002).
  • [11] J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography”, Opt. Lett. 22, 934-936 (1997).
  • [12] O. V. Angelski, A. G. Ushenko, A. D. Arkhelyuk, S. B. Ermolenko, and D. N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals”, Quantum Electron. 29, 1074-1077 (1999).
  • [13] A. G. Ushenko, “Polarization structure of biospeckles and the depolarization of laser radiation”, Opt. Spectrosc. 89, 597-601 (2000).
  • [14] A. G. Ushenko, I. Z. Misevich, V. Istratiy, I. Bachyns'ka, A. P. Peresunko, O. K. Numan, and T. G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes”, Advances in Optical Technologies, doi: 10.1155/2010/423145.
  • [15] O. V. Angelsky, A. P. Maksimyak, P. P. Maksimyak, and S. G. Hanson, “Optical correlation diagnostics of rough surfaces with large surface inhomogeneities”, Opt. Express 14, 7299-7311 (2006).
  • [16] O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “Investigation of the correlation structure of biological tissue polarization images during the diagnostics of their oncological changes”, Phys. Med. Biol. 50, 4811-4822 (2005).
  • [17] O. V. Angelsky, A. G. Ushenko, and Ye. G. Ushenko, “2-D stokes polarimetry of biospeckle tissues images in pre-clinic diagnostics of their pre-cancer states”, J. Holography Speckle 2, 26-33 (2005).
  • [18] O. V. Angelsky, G. V. Demianovsky, A. G. Ushenko, D. N. Burkovets, and Yu. A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes”, J. Biomed. Opt. 9, 679-690 (2004).
  • [19] O. V. Dubolazov, A. G. Ushenko, V. T. Bachynsky, A. P. Peresunko, and O. Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals”, Advances in Optical Technologies, doi: 10.1155/2010/162832.
  • [20] O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, Ye. G. Ushenko, Yu. Ya. Tomka, and V. P. Pishak, “Polarization-correlation mapping of biological tissue coherent images”,J. Biomed. Opt. 10, article ID 064025 (2005).
  • [21] B. B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, W. H. Freeman, 1982.
  • [22] O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G. Ushenko, and Yu. A. Ushenko, “Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states”, J. Phys. D: Appl. Phys. 38, 4227-4235 (2005).
  • [23] O. V. Angelsky, D. N. Burkovets, A. V. Kovalchuk, and S. G. Hanson, “Fractal description of rough surfaces”, Appl. Opt. 41, 4620-4629 (2002).
  • [24] O. V. Angelsky, P. P. Maksimyak, and T. O. Perun, “Optical correlation method for measuring spatial complexity in optical fields”, Opt. Lett. 18, 90-92 (1993).
  • [25] O. V. Angelsky, P. P. Maksimyak, and T. O. Perun, “Dimensionality in optical fields and signals”, Appl. Opt. 32, 6066-6071 (1993).
  • [26] O. V. Angelsky, A. G. Ushenko, Y. G. Ushenko, and Y. Y. Tomka, “Polarization singularities of biological tissues images”, J. Biomed. Opt. doi: 10.1117/1.2360527.
  • [27] A. G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images”, Opt. Spectrosc. 91, 932-936 (2001).
  • [28] A. G. Ushenko, “Correlation processing and wavelet analysis of polarization images of biological tissues”, Opt. Spectrosc. 91, 773-778 (2002).
  • [29] A. G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers”, Opt. Spectrosc. 91, 313-316 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0007-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.