Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper mainly presents a theoretical analysis for the characteristics of quantum dot infrared photodetectors (QDIPs) and quantum wire infrared photodetectors (QRIPs). The paper introduces a unique mathematical model of solving Poisson's equations with the usage of Lambert W functions for infrared detectors' structures based on quantum effects. Even though QRIPs and QDIPs have been the subject of extensive researches and development during the past decade, it is still essential to implement theoretical models allowing to estimate the ultimate performance of those detectors such as photocurrent and its figure-of-merit detectivity vs. various parameter conditions such as applied voltage, number of quantum wire layers, quantum dot layers, lateral characteristic size, doping density, operation temperature, and structural parameters of the quantum dots (QDs), and quantum wires (QRs). A comparison is made between the computed results of the implemented models and fine agreements are observed. It is concluded from the obtained results that the total detectivity of QDIPs can be significantly lower than that in the QRIPs and main features of the QRIPs such as large gap between the induced photocurrent and dark current of QRIP which allows for overcoming the problems in the QDIPs. This confirms what is evaluated before in the literature. It is evident that by increasing the QD/QR absorption volume in QDIPs/QRIPs as well as by separating the dark current and photocurrents, the specific detectivity can be improved and consequently the devices can operate at higher temperatures. It is an interesting result and it may be benefit to the development of QDIP and QRIP for infrared sensing applications.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
405--417
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
autor
autor
- Engineering Department, NRC, Atomic Energy Authority, Inshas, Cairo, Egypt, engtokhy@gmail.com
Bibliografia
- [1] H. C. Liu, “Quantum dot infrared photodetector”, Opto-Electron. Rev. 11, 1-5 (2003).
- [2] A. Nasr, “Theoretical characteristics of quantum wire infrared photodetectors under illumination conditions”, J. Opt. Commun. 30, 126-132 (2009).
- [3] M. S. El_Tokhy, I. I. Mahmoud, and H. A. Konber, “Characteristics analysis of quantum wire infrared photodetectors under both dark and illumination conditions”, Infrared Phys. Techn. 53, 320-335 (2010) doi:10.1016/j.infrared.2010.05.004.
- [4] A. Nasr, “Performance of quantum wire infrared photodetectors under illumination conditions”, Opt. Laser Technol. 41, 871-876 (2009).
- [5] J. d. L. Figuera, M. A. Huerta-Garnica, J. E. Prieto, C. Ocal, and R. Miranda, “Fabrication of magnetic quantum wires by step-flow growth of cobalt on copper surfaces”, Appl. Phys. Lett. 66, 1006-1008 (1995).
- [6] S. Eggert, “One-dimensional quantum wires: A pedestrian approach to bosonization”, arXiv:0708.0003v2 [cond-mat.str-el], 6 Aug., 2007.
- [7] P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunnelling quan-tum-dot infrared photodetector operating at room temperature”, Appl. Phys. Lett. 86, 191106-1-191106-3 (2005).
- [8] P. Martyniuk and A. Rogalski, “Insight into performance of quantum dot infrared photodetectors”, Bull. Pol. Acad. Sci.-Te. 57, 103-116 (2009).
- [9] V. Ryzhii, I. Khmyrova, M. Ryzhii, and V. Mitin, “Comparison of dark current, responsivity and detectivity in different intersubband infrared photodetectors”, Semicond. Sci. Tech. 19, 8-16 (2004).
- [10] M. S. El_Tokhy, I. I. Mahmoud, and H. A. Konber, “Comparative study between different quantum infrared photodetectors”, Opt. Quant. Electron. 41, 933-956 (2010).
- [11] B. Aslan, H. C. Liu, M. Korkusinski, S. J. Cheng, and P. Hawrylak, “Response spectra from mid to far-infrared, polarization behaviours, and effects of electron numbers in quantum-dot photodetectors”, Appl. Phys. Lett. 82, 630-632 (2003).
- [12] K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity”, Appl. Phys. Lett. 88, 151104 (2006).
- [13] A Rogalski, “Insight on quantum dot infrared photodetectors”, 2nd National Conf. On Nanotechnology 146, 1-9 (2009).
- [14] P. Kuffner, “Quantum dot interdiffusion for two colour quantum dot infrared photodetectors”, A thesis submitted as partial fulfillment of the requirements for the degree of Bachelor of Engineering with Honours at the Australian National University, April 2006.
- [15] V. Ryzhii, I. Khmyrova, V. Pipa, V. Mitin, and M. Willander, “Device model for quantum dot infrared photodetectors and their dark-current characteristics”, Semicond. Sci. Tech. 16, 331-338 (2001).
- [16] A. Nasr, “Modelling of solid state photodetectors for ionization radiation and optical fiber communications”, PhD Dissertation, Al Azhar University, 2003.
- [17] M. B. El_Mashade, M. Ashry, and A. Nasr, “Theoretical analysis of quantum dot infrared photodetectors”, Semicond. Sci. Technol. 18, 891-900 (2003).
- [18] V. Ryzhii, V. Pipa, I. Khmyrova, V. Mitin, and M. Willander, “Dark current in quantum dot infrared photodetectors”, Jpn. J. Appl. Phys. 39, L1283-L1285 (2000).
- [19] C. Hing Tan, S. C. L. T. Mun, P. Vines, J. P. R. David, and M. Hopkinson, “Measurement of noise and gain in quantum dot infrared photodetectors (QDIPs), Proc. 4th EMRS DTC Technical Conf., Edinburgh, 2007.
- [20] S. Chakrabarti, A. D. Stiff-Roberts1, X. H. Su, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “High-performance mid-infrared quantum dot infrared photodetectors”, J. Phys. D: Appl. Phys. 38, 2135-2141 (2005).
- [21] X. Lu, J. Vaillancourt, and M. J. Meisner, “A modulation-doped longwave infrared quantum dot photodetector with high photoresponsivity”, Semicond. Sci. Tech. 22, 993-996 (2007).
- [22] Y. Matsukura, Y. Uchiyama, H. Yamashita, H. Nishino, and T. Fujii, “Responsivity-dark current relationship of quantum dot infrared photodetectors (QDIPs)”, Infrared Phys. Techn., 257-259 (2009).
- [23] S. M. Nejad, S. Olyaee, and M. Pourmahyabadi, “Optimal dark current reduction in quantum well 9 μm GaAs/AlGaAs infrared photodetectors with improved detectivity”, Am. J. Appl. Sci. 5, 1071-1078 (2008).
- [24] P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation”, J. Appl. Phys. 104, 034314 (2008).
- [25] S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot infrared photodetectors”, Infrared Phys. Techn. 50, 166-170 (2007).
- [26] A. Nasr, and M. B. El_Mashade, “Theoretical comparison between quantum well and dot infrared photodetectors”, Opto electronics IEE Proc. 153, 183-190 (2006).
- [27] V. Ryzhii, I. Khmyrova, M. Ryzhii, and M. Ershov, “Comparison studies of infrared phototransistors with a quantum-well and a quantum-wire base”, J. Phys. IV 6, C3-157-C3-161 (1996).
- [28] Imbaby I. Mahmoud, Hussein A. Konber, and Mohamed S. El_Tokhy, “Performance improvement of quantum dot infrared photodetectors through modeling”, Journal of Optics and Laser Technol. 42, 1240-1249 (2010).
- [29] Mohamed S. El_Tokhy, Imbaby I. Mahmoud, and Hussein A. Konber, “Performance improvement of quantum well infrared photodetectors through modeling”, Journal of Nanophotonics, SPIE 04, No. 01, 1-15 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0007-0001