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Calculation of injury assessment for the chest wall 
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Abstract. The proposed method of calculation combines the spline approximation and precise 
solution of the ordinary differential equations. The solution is similar to the solution of the generalized 
Sturm-Liouville problem. The solution is sought in the form of power series with proper radius of 
convergence. The method is applied to the calculation of injury assessment prediction. The method 
may be used for problems when high precision of calculations is needed. 
Keywords: Prediction of injury assessment, spline approximation, power series method, solution of 
ordinary differential equation, prediction of blast injury level

1. Introduction

Mines are significant threat for military vehicles and their occupants. Organs 
containing air are the most sensitive to overpressure caused by blast waves. 
Physical injury will take place if the biomechanical response is of such a nature 
that the biological system deforms beyond a tolerable limit resulting in damage 
to anatomical structures and/or alteration in normal function. In full-scale tests, 
the loads on the occupants are measured using instrumented anthropomorphic 
test devices (ATDs) — widely known as crash test dummies, for example, the 
Hybrid III 50th percentile male ATD [2]. The same is true for a person in building 
acted by blast waves.
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Today, military standards describe the Axelsson & Yelverton model (Fig. 1) 
like the best model for non-auditory blast injury assessment occurring during an 
AV blast mine strike. 

Fig. 1. Thorax model — single chamber one lung model [Axelsson, 1996] [2]

A: effective area;
M: effective mass;
V: initial gaseous volume of the lungs;
X: displacement;
C: damping factor;
K: elasticity constant;
P0: ambient pressure;
P(t): overpressure;
g: polytropic exponent for gas in lungs.
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(1.1)

Considering that there are no risk available, it was decided to use a conservative 
approach and take the no injury level (3.6 m/s) as the limit for the chest wall velocity 
predictor (CWVP).

The recommended model is simple but contains nonlinear interaction of air in 
lung against overpressure caused by blast. The velocity profile should be calculated 
for the injury assessment. Equation (1.1) is well known [2], [1] e.g. but contains 
nonlinear, polytropic reaction of the air in lung.

The function p(t) represents the overpressure divided by ambient pressure. 
The overpressure was measured on ATD during real blast test. Usually, data are 
memorised at equal distance of time, but programs and formulas are prepared for 
unequal steps of time also.

Equation (1.1) may be solved by many methods. We propose the method 
containing two ideas: method of solution based at the definition of the solution to the 
initial problem and spline approximation applied to the results of measurement. The 
solution of the initial problem is defined as the power series satisfying the equation 
with proper radius of convergence and convergent to the initial conditions. The 
method is described in Ref. 5. The spline approximation method is described in 
Ref. 4 and in references cited there. The spline approximation fulfils the role of the 
specific filter [4]. The proposed method is too precise for the purpose but enables 
rejection of the charges about computational errors.
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2. Mathematical model

Equation (2.1) is adequate to the process
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where  0 0 0, , , 1.2.
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The pressure is measured and known as the set of pairs

	 {ti, pi}, i = 0, 1, 2, 3,…, I.	 (2.2)

The function p(t) is approximated by the spline method (see [4] and references in 
Ref. 4)

	 p(t) = ps(t).	 (2.3)

At the time t = 0, the lungs are at rest
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The relative displacement is used in calculations
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The problem to solve consists of the initial conditions:
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where
	 0
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=  is for the known parameter,	 (2.9)
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are the coefficients of Taylor series of (1 ) .gex−  The equivalent iterative formula is
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3. Solution to the problem

The solution is the compositions of the solutions in the intervals (ti, ti+1];  
i = 0, 1, 2, …, I–1. The intervals are taken from Eq. (2.2). The dimensionless time 
is used in each interval
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and the initial problem is solved
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Initial values (3.3) are taken from the solution in the previous interval. The function 

x(t) and its first derivative ( )dx t
dt

 are continuous, so for interval i we have

	
	

1
0 0 1

( )(1); .i

i

t d
t d 

x 
x x 


−

=
∆

= =
∆ 	

(3.4)

The function ( )x   at the right side of (3.4) is taken from the previous interval i–1. 
For i = 0 initial conditions 0 0,x   are taken from initial conditions of the process 
(2.7). The problem may be considered as non-linear generalized Sturm-Liouville 
problem.
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The solution to the initial problem (3.2), (3.3) is sought as the power series [1, 5] 
(and references in Ref. 1)
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Equating coefficients of the same powers q in equation (3.2) consecutive 
formulas for coefficients of the series (3.5) hm, m = 2, 3, …, M are calculated.

The algorithm of calculations contains stepping up for intervals i = 0,1,2 …, I – 1. 
In each interval calculations begin at exponent q = 0 and step up with exponent filling 
all calculated symbols with proper values. The symbols are introduced:
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The convention is used in formulas: an means a to n (power), but a(n) is for vector 
with the upper index n.
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Right side of Eq. (3.2) is 
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R0 = di +(1+ di)I0,

R1 = ci(1 + I0) + (1 + di)I1,

R2 = bi(1 + I0) + ci I1 + (1 + di)I2,

R3 = ai(1 + I0) + bi I1 + ci I2 + (1 + di)I3,

Rλ = aiIλ−3 + bi Iλ−2 + ci Iλ−1 + (1 + di)Iλ,  λ = 4, 5, ..., Μ.

For q = 0 we get
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For q = 2, 3, …, M we get
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Series are cut at the end of calculations, not at the intermediate steps. The 
problem of error estimation and convergence of the series is discussed with the 
final discussion of results.

4. Results of numerical analysis

4.1. 	 Convergence of the series

The splain approximation is performed by our “AS” program (Visual C++.
NET 2003). Data are taken from the experiments at firing ground in form of Eq. 
(2.2) (or in the different forms). The overpressure divided by ambient pressure is 
approximated by the function ps(t), with the chosen deviation δ  [4].
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The set [ai, bi,ci di, ti, dti], i = 0, 1, …, I–1,  is taken form the file produced by “AS”.
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Convergence of the series ( )
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For example, when ex = 0.901098901, the difference between left and right side of 

equality (2.10) is as in Table 1.
Table 1

Convergence of ( )1- g
ex Taylor series

N 10 20 30 40 120

∆ 1.64 × 10-3 1.74 × 10-4 2.93 × 10-5 0.6 × 10-6 1.6 × 10-10

The N = 120 elements of the sum of Eq. (2.10) where applied. Function (3.5) 
is the solution of the initial problem (3.3) for Eq. (3.2) if it is calculated in ac-
cordance with Eqs. (3.6)-(3.12) and its convergence radius is grater than zero [5]. 
The condition — the convergence radius is greater than zero — is the necessary 
condition in our problem. We are not able to prove mathematically this neces-
sary condition, but we can easily recognise if the convergence radius Rc is greater 
than 1. If Rc < 1, the calculations of the series [hm] destabilizes abruptly. It is easily 
detected during calculations, especially for big numbers of elements in the series 
(3.5). We take the condition Rc > 1 as the sufficient condition of the existence of 
the solution (3.5). In Ref. 5, the method of analytic continuation is applied to the 
solution of the problem. Applying the method of analytic continuation we may 
get the solution when 0 < Rc < 1 also. In the prepared computer program, the 
solutions can be found only for Rc > 1 for each step i, ti ≤ t < ti+1. The problem  
(3.2 -3.12) is nonlinear, so the convergence radius depends on the external pres-
sure (external force). The computer program verifies the condition Rc > 1 for each 
step i. Only sufficiently big numbers of the elements M (3.6) are applied, because 
the imprecisely calculated initial conditions at the interval i–1 influence the solu-
tion for interval i and next intervals. The influence of the number of elements in 
the series (3.5) on the results was investigated. The distance between the functions 
is measured by mean square deviation 
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where M1 and M2 are the different numbers of the elements M.
Calculations were performed using M = 145. Calculations of MSD performed 

for M = 92, 103, 114, 125, 136, 147 disclose, that the differences MSD are of the order 
of computer 0. Generally, too many elements of the sums were used in calculations 
for this simple model with specific equation.
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4.2. 	 Comparison of spline interpolation and approximation

The results of spline interpolation applied to the experimental data are seen 
below. When spline interpolation is applied, the function ps(t) is equal to the 
measured values at t = ti,
	 ps(ti) = pi,  i = 1, 2, 3, …, I.	 (4.2)

Fig. 2. Results of measurements interpolated by spline method

The results of spline interpolation were applied for calculations of displacement, 
velocity, acceleration by the method described in the previous chapter.

Fig. 3. The displacement of lungs calculated with spline interpolation
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The spline approximation minimizes functional
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where u > 0, and ui > 0, 0, .i I=  The theorem [3] determines, that if
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then, functional (4.3) gets minimum.

	

Fig. 4. The velocity of lungs calculated with spline interpolation

Fig. 5. The acceleration of lungs calculated with spline interpolation
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The set of conditions is closed by “natural boundary conditions”
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If the errors of measurements are known, then it is possible to choose the greater 
numbers ui for the times ti when the error is smaller. The exemplary data considered 
in the paper where obtained at experiments without possibility of errors estimation 
for each sample pi. So, for all ti, ui = 1 is assumed. The rate of approximation is 
estimated by the number ε

	
	
	

[ ]2

0

1 1 ( ) .
1

i I

i i s i
i

u p p t
I

e


=

=

= −
+ ∑

	
(4.6)

The divisor 	
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removes the influence of constant multiplier at the rate of approximation. It means, 
that the units do not influence ε. For the chosen rate of approximation, the para-
meter u (4.3) is calculated by the computer program “AS”. The influence of the rate 
ε is seen in Fig. 2 (ε = 0), in Fig. 6 (ε = 0.05), and in Fig. 7 (ε = 0.10).

Fig. 6. Results of measurements approximated by spline, ε = 0.05
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The chaotic vibrations with frequency about 5 kHz easily seen in Fig. 2 
(interpolation) and also seen in Fig. 6 [approximation (ε = 0.05)] nearly disappear for 
approximation (ε = 0.10) in Fig. 7. This process of filtration is seen in spectrum [4]. 
At the same time, the filtration with the small rate ε does not influence displacement, 
velocity and even acceleration considerably. It is illustrated in exemplary Figs. 3, 
and 8; 4, and 9; 5, and 10.

Fig. 7. Results of measurements approximated by spline, ε = 0.10

Fig. 8. Displacements of the lungs, spline approximation ε = 0.10
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The computer programs are ready and validated but they are not user friendly. 
The methods are worth to be known because they may be the only one for the 
similar problem when the high precision would be necessary. 

Received March 2 2010, revised May 2010.
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M. Szudrowicz, L. Solarz

Obliczenia prawdopodobieństwa obrażeń płuc spowodowanych falą podmuchu
Streszczenie. Proponowana metoda obliczeń łączy aproksymację funkcjami sklejanymi z precyzyjną 
metodą rozwiązania równań różniczkowych zwyczajnych przez szeregi potęgowe o dostatecznie dużym 
promieniu zbieżności. Metoda ta jest podobna do metody rozwiązania zagadnienia początkowego 
w uogólnionym problemie Sturma-Liouvilla. Metoda została zastosowana do obliczenia współczynnika 
szacującego możliwość urazu płuc poprzez oddziaływanie fali uderzeniowej wybuchu.
Słowa kluczowe: szacowanie urazu, oddziaływanie wybuchu na płuca, aproksymacja funkcjami 
sklejanymi, metoda szeregów potęgowych




