PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Terahertz detectors and focal plane arrays

Autorzy
Identyfikatory
Warianty tytułu
PL
Terahertzowe detektory i ich matryce
Języki publikacji
EN
Abstrakty
EN
Terahertz (THz) detectors play increasing role in different areas of human activities (e.g., security, biological, drugs and explosions detection, imaging, astronomy applications, etc.). In the paper, issues associated with the development and exploitation of THz radiation detectors is discussed. The basic physical phenomena and the recent progress in both direct and heterodyne detectors are described. More details concerning Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachiningare underlined. Also the operational conditions of THz detectors and their upper performance limits are reviewed.
PL
Znaczenie detektorów terahertzowych wzrasta w różnych obszarach aktywności człowieka (dla przykładu: w ochronie obiektów i ludzi; w detekcji środków biologicznych, narkotyków, odczynników trujących, środków wybuchowych zobrazowaniu, w zastosowaniach astronomicznych, etc.). W pracy przedstawiono sposób działania i postęp technologiczny w rozwoju różnych typów detektorów terahertzowych zarówno w detekcji bezpośredniej jak i heterodynowej. Więcej uwagi poświęcono detektorom z barierami Schottky'ego, detektorom nadprzewodzącym i detektorom wykorzystującym tranzystory polowe, których rozwój uwarunkowany jest postępem w technologii mikromechaniki półprzewodnikowej.
Rocznik
Strony
93--108
Opis fizyczny
Bibliogr. 127 poz., wykr.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Instytut Fizyki
Bibliografia
  • [1] Lettington A. H., I. M. Blankson, M. Attia and D. Dunn: Review of imaging architecture. Proc. SPIE 4719, 327-340 (2002).
  • [2] Spiegel P. H.: Terahertz technology. IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
  • [3] Chattopadhyay G.: Submillimeter-wave coherent and incoherent sensors for space applications. In: Sensors. Advancements in Modeling, Design Issues, Fabrication and Practical Applications, pp. 387-414, edited by S. С. Mukhopadhyay and R. Y. M. Huang, Springer, New York, 2008.
  • [4] Dragoman D. and M. Dragoman: Terahertz fields and applications. Prog. Quant. Electron. 28, 1-66. (2004).
  • [5] Crowe T. W., W. L. Bishop, D. W. Porterfield, J. L. Hesler, and R. M. Weikle: Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits 40, 2104-2110 (2005).
  • [6] Blain A. W., I. Small, R. J. Ivison, J.-P. Kneib, and D. T. Frayer: Submillimetre galaxies. Phys. Rep. 369, 111-176 (2002).
  • [7] Leisawitz D., W. С. Danchi, M. J. DiPirro, L. D. Feinberg, D. Y. Gezari, M. Hagopian, W. D. Langer, J. С. Mather, S. H. Moseley, M. Shao, R. F. Silverberg, J. G. Staguhn, M. R. Swain, H. W. Yorke, and X. Zhang: Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. Proc. SPIE 4013, 36-46 (2000).
  • [8] Siegel P. H. and R. J. Dengler: Terahertz heterodyne imaging Part I: Introduction and techniques. Int. J. Infrared Millimeter Waves 27, 465-480 (2006).
  • [9] Siegel P. H. and R. J. Dengler: Terahertz heterodyne imaging Part II: Instrumets. Int. J. Infrared Millimeter Waves 27, 631-655 (2006).
  • [10] Zmuidzinas J. and P. L. Richards: Superconducting detectors and mixers for millimeter and submillimeter astrophysics. Proc. IEEE 92, 1597-1616(2004).
  • [11] Ferguson B. and X.-C. Zhang: Materials for terahertz science and technology. Nature Mater. 1, 26-33 (2002).
  • [12] D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003.
  • [13] Brown E. R.: Fundamentals of terrestrial millimetre-wave and THz remote sensing. Inter. J. High Speed Electronics & Systems 13, 99-1097(2003).
  • [14] Woodward R. M.: Terahertz technology in global homeland security. Proc. SPIE 5781, 22-31 (2005).
  • [15] Woolard D. L., R. Brown, M. Pepper, and M. Kemp: Terahertz frequency sensing and imaging: A time of reckoning future applications?. Proc. IEEE 93, 1722-1743 (2005).
  • [16] Zhong H., A. Redo-Sanchez, and X.-C. Zhang: Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14, 9130-9141 (2006).
  • [17] Tonouchi M.: Cutting-edge terahertz technology. Nature Photonics 1, 97-105(2007).
  • [18] Carr G. L., M. С. Martin, W. R. McKinney, G. R. Neil, K. Jordan, and G. P. Williams: High power terahertz radiation from relativistic electrons. Nature 420, 153 (2002).
  • [19] Wang H., L. Samoska, T. Gaier, A. Peralta, H. Liao, Y. C. Leong, S. Weinreb, Y. С. Chen, M. Nishimoto, and R. Lai: Power-amplifier modules covering 7-113 GHz using MMICs. IEEE Trans. MTT-49, 9-16 (2001).
  • [20] Kopeika N.: A System Engineering Approach to Imaging. SPIE Optical Engineering Press, Bellingham, 1998.
  • [21] Hübers H.-W.: Terahertz heterodyne receivers. IEEE J. Sel. Top. Quantum. Electron. 14, 378-391 (2008).
  • [22] Kinch M. A. and B. V. Rollin: Detection of millimetre and submillimetre wave radiation by free carrier absorption in a semiconductor. Brit. J. Appl. Phys. 14, 672-676 (1963).
  • [23] Nakagawa Y. and H. Yoshinaga: Characteristics of high-sensitivity Ge bolometer. Jap. J. Appl. Phys. 9, 125-131 (1970).
  • [24] Bratt P. R.: Impurity germanium and silicon infrared detectors. In Semiconductors and Semimetals, Vol. 12, pp. 39-142, edited by R. K. Willardson and A. C. Beer, Academic Press, New York (1977).
  • [25] Haller E. E., M. R. Hueschen, and P. L. Richards: Ge:Ga photoconductors in low infrared backgrounds. Appl. Phys. Lett. 34, 495-497(1979).
  • [26] Sclar N.: Properties of doped silicon and germanium infrared detectors. Prog. Quant. Electr. 9, 149-257 (1984).
  • [27] Padman R., G. J. White, R. Barker, D. Bly, N. Johnson, H. Gibson, M. Griffin, J. A. Murphy, R. Prestage, J. Rogers, and A. Scivett: A dual-polarization InSb receiver for 461/492 GHz. Int. J. Infrared Millimeter Waves 13, 1487-1513 (1992).
  • [28] Huffman J. E.: Infrared detectors for 2 to 220 μm astronomy. Proc. SPIE 2274, 157-169 (1995).
  • [29] Kazanskii A. G., P. L. Richards and E. E, Haller: Far-infrared photoconductivity of uniaxially stressed germanium. Appl. Phys. Lett. 31,496-497 (1977).
  • [30] Hübers H.-W., S. G. Pavlov, K. Holldack, U. Schade, and G. Wüstefeld: Long wavelength response of unstressed and stressed Ge:Ga detectors. Proc. SPIE 6275, 627505 (2008).
  • [31] Hoenle R., J. W. Beeman, E. E. Haller, U. Groezinger: Far-infrared photoconductors for Herschel and SOFIA. Proc. SPIE. 4855,115-128 (2003).
  • [32] Rieke G. H.: Infrared detector arrays for astronomy. Annu. Rev. Astrophys. 45, 77-115 (2007).
  • [33] Hargreaves S. and R. A. Lewis: Terahertz imaging: Materials and methods. J. Mater. Sci.: Mater. Electron. 18, S299-S303 (2007).
  • [34] N. Karpowicz, H. Zhong, J. Xu, K.-L. Lin, J.-S. Hwang and X.-C. Zhang, „Nondestructive sub-THz imaging,” Proc. SPIE. 5727, 132-142 (2005).
  • [35] A. Dobroiu, C. Otani, and K. Kawase, „Terahertz-wave sources and imaging applications,” Meas. Sci. Technol. 17, R161-R174 (2006).
  • [36] P. L. Richards, „Bolometers for infrared and millimeter waves”, J. Appl. Phys. 76, 1-24 (1994).
  • [37] M. Kenyon, P. K. Day, С. M. Bradford, J. J. Bock, and H. G. Leduc, „Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy,” Proc. SPIE. 6275, 627508 (2006).
  • [38] A. D. Turner, J. J. Bock, J. W. Beeman, J. Glenn, P. С Hargrave, V. V. Hristov, H. T. Nguyen, F. Rahman, S. Sethuraman, and A. L. Woodcraft, „Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Opt. 40, 4921-4932 (2001).
  • [39] B. S. Karasik, D. Olaya, J. Wei, S. Pereverzev, M. E. Gerhenson, J. H. Kawamura, W. R. McGrath, and A. V. Sergeev, „Recordlow NEP in hot-electron titanium nanobolometers”, IEEE Trans. Appl. Supercond. 17, 293-297 (2007).
  • [40] F. Sizov, „THz radiation sensors”, Opto-Electron. Rev. 18, 10-36, (2010).
  • [41] J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev and M. E. Gershenzon, „Ultrasensitive hot-electron nanobolomters for terahertz astrophysics”, Nature Nanotechnol. 3, 496-500, (2008).
  • [42] D. J. Benford, „Transition edge sensor bolometers for CMB polarimetry”, http://cmbpol.uchicago.edu/workshops/technology2008/depot/cmbpol_technoloqies_benford_jeps_4.pdf
  • [43] С. A. Allen, M. J. Amato, S. R. Babu, A. E. Bartels, D. J. Benford, R. J. Derro, С. D. Dowell, D. A. Harper, M. D. Jhabvala, S. H. Moseley, T. Rennick, W. W. Smith, and J. G. Staguhn, „Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II”, Proc. SPIE 4855, 63-72 (2003).
  • [44] T. J. Ames, T. G. Phillips, С. Rioux, and, „Astronomical demonstration of superconducting bolometer arrays”, Proc. SPIE 4855, 100-107(2003).
  • [45] G. H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter, Cambridge University Press, Cambridge, 2003.
  • [46] V. G. Bozhkov, „Semiconductor detectors, mixers, and frequency multipliers for the terahertz band', Radiophys. Quant. Electr. 46, 631-656 (2003).
  • [47] T. W. Crowe, R. J. Mattauch, H.-P. Roser, W. L Bishop, W. С. В. Peatman, and X. Liu, „GaAs Schottky diodes for THz mixing applications”, Proc. IEEE. 80, 1827-1841 (1992).
  • [48] A. Van Der Ziel, „Infrared detection and mixing in heavily doped Schottky barrier diodes”, J. Appl. Phys. 47, 2059-2068 (1976).
  • [49] H. A. Watson, Microwave Semiconductor Devices and Their Circuit Applications, McGraw-Hill, New York, 1969.
  • [50] E. J. Becklake, С. D. Payne, and B. E. Pruer, „Submillimetre performance of diode detectors using Ge, Si and GaAs”, J. Phys. D: Appl. Phys. 3, 473-481 (1970).
  • [51] D. T. Young and J. С. Irvin, „Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique”, Proc. IEEE 12, 2130-2132 (1965).
  • [52] T. W. Crowe, D. P. Porterfield, J. L. Hesler, W. L. Bishop, D. S. Kurtz, and K. Hui, „Terahertz sources and detectors”, Proc. SPIE 5790, 271-280 (2005).
  • [53] H. P. Röser, H.-W. Hübers, E Bründermann, and M. F. Kimmitt „Observation of mesoscopic effects in Schottky diodes at 300K when used as mixers at THz frequencies”, Semicond. Sci. Technol. 11, 1328-1332 (1996).
  • [54] D. T. Young and J. С. Irvin, „Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique”, Proc. IEEE 53, 2130-2132 (1965).
  • [55] T. W. Crowe, „GaAs Schottky barrier mixer diodes for the frequency range 1-10 THz”, Int. J. Infrared Millim. Waves 11, 765-7771 (1990).
  • [56] H. Kräutle, E. Sauter, and G. V. Schultz, „Antenna characteristies of whisker diodes used at submillimeter receivers”, Infrared Phys. 17,477-483 (1977).
  • [57] R. Titz, B. Auel, W. Esch, H. P. Röser, and G. W. Schwaab, "Antenna measurements of open-structure Schottky mixers and determination of optical elements for a heterodyne system at 184, 214 and 287 μm”, Infrared Phys. 30, 435-441 (1990).
  • [58] S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, and T. W. Crowe, „Integrated GaAs Schottky mixers by spinon-dielectric wafer bonding”, IEEE Trans. Electron. Devices 47, 11152-1156 (2000).
  • [59] P. Siegel, R. P. Smith, M. С. Gaidis, and S. Martin, „2.5-THz GaAs monolithic membrane-diode mixer”, IEEE Trans. Microw. Theory Tech. 47, 596-604 (1999).
  • [60] V. I. Piddyachiy, V. M. Shulga, A. M. Korolev, and V. V. Myshenko, „High doping density Schottky diodes in the 3 mm wavelength cryogenic heterodyne receiver”, Int. J. Infrared Millimeter Waves 26,1307-1315 (2005).
  • [61] F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D. G. Paveljev, M. Winnerwisser, and G. Winnerwisser, „Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz”, IEEE Microwave Guided Wave Letters 9, 198-200 (1999).
  • [62] D. H. Martin, Spectroscopic Techniques for Far-infrared, Submilimeter and Millimeter Waves, North-Holland, Amsterdam, 1967.
  • [63] E. Burstein, D. N. Langenberg, and B. N. Taylor, „Superconductors as quantum detectors for microwave and sub-millimeter radiation”, Phys. Rev. Lett. 6, 92-94 (1961).
  • [64] A. H. Dayem and R. J. Martin, „Quantum interaction of microrave radiation with tunnelling between superconductors”, Phys.Rev. Lett. 8, 246-248 (1962).
  • [65] P. K. Tien and J. P. Gordon, „Multiphoton process observed in the interaction of microwave fields with the tunnelling between superconductor films”, Phys. Rev. 129, 647-651 (1963).
  • [66] P. L Richards, T. M. Shen, R. E. Harris, and F. L. Lloyd, „Quasiparticle heterodyne mixing in SIS tunnel junctions”, Appl. Phys. Lett. 34, 345-347 (1979).
  • [67] G. J.Dolan.T. G. Phillips, and D. P. Woody, „Low-noise 115; GHz mixing in superconducting oxide-barrier tunnel junctions”, Appl. Phys. Lett. 34, 347-349 (1979).
  • [68] J. R. Tucker and M. J. Feldman, „Quantum detection at millimeter wavelength”, Rev. Modern Phys. 57, 1055-1113 (1985).
  • [69] C. A. Mears, Q. Hu, P. L. Richards, A. H. Worsham, D. E. Prober, and A. V. Raisanen, „Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487-2489 (1990).
  • [70] V. P. Koshelets, S. V. Shitov, L. V. Filippenko, P. N. Dmitriev, A. N. Ermakov, A. S. Sobolev, and M. Yu. Torgashin, „Integrated superconducting sub-mm wave receivers”, Radiophys. Quant. Electr. 46, 618-630 (2003).
  • [71] A. Karpov, D. Miller, F. Rice, J. A. Stern, B. Bumble, H. G. LeDuc, and J. Zmuidzinas, „Low noise SIS mixer for far infrared radio astronomy”, Proc. SPIE 5498, 616-621 (2004).
  • [72] G. Chattopadhyay, „Future of heterodyne receivers at submillimeter wavelengths”, Digest IRMMW-THz-2005 Conf., 461-462 (2005).
  • [73] G. N. Gol'tsman, „Hot electron bolometric mixers: new terahertz technology”, Infrared Phys. & Technol. 40, 199-206 (1999).
  • [74] T. G. Phillips and K. B. Jefferts, „A low temperature bolometer heterodyne receiver for millimeter wave astronomy”, Rev. Sci. Instrum. 44, 1009-1014 (1973).
  • [75] K. Seeger, Semiconductor Physics, Springer, Berlin, 1991.
  • [76] J.-X. Yang, F. Agahi, D. Dai, С. F. Musante, W. Grammer, K. M. Lau, and K. S. Yngvesson, „Wide-bandwidth electron bolometric mixers: a 2DEG prototype and potential for low-noise THz receivers”, IEEE Trans. Microwave Theory Tech. 41, 581-589 (1993).
  • [77] G. N. Gol'tsman and K. V. Smirnov, „Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures”, JETP Lett. 74, 474-479 (2001).
  • [78] A. A. Verevkin, N. G. Ptitsina, K. V. Smirnov, G. N. Gol'tsman, E. M. Gershenzon, and K. S. Ingvesson, „Direct measurements of energy relaxation times on an AIGaAs/GaAs heterointerface in the range 4.2-50 K”, JETP Lett. 64, 404-409 (1996).
  • [79] T. Phillips and D. Woody, „Millimeter-wave and submillimeterwave receivers”, Annu. Rev. Astron. Astrophys. 20, 285-321 (1982).
  • [80] „Detectors needs for long wavelength astrophysics”, A Report by the Infrared, Submillimeter, and Millimeter Detector Working Group, June 2002.
  • [81] P. Agnese, С. Buzzi, P. Rey, L. Rodriguez, and J. L. Tissot, „New technological development for far-infrared bolometer arrays”, Proc. SPIE 3698, 284-290 (1999).
  • [82] C. Dowell, С. A. Allen, S. Babu, M. M. Freund, M. B. Gardnera, J. Groseth, M. Jhabvala, A. Kovacs, D. С. Lis, S. H. Moseley, T. G. Phillips, R. Silverberg, G. Voellmer, and H. Yoshida, „SHARC II: a Caltech Submillimeter Observatory facility camera with 384 pixels”, Proc. SPIE 4855, 73-87 (2003).
  • [83] N. Billot, P. Agnese, J. L. Augueres, A. Beguin, and A. Bouere, O. Boulade, С. Саrа, С. Cloue, E. Doumayrou, L. Duband, B. Horeau, I. Le Mer, J. L. Pennec, J. Martignac, K. Okumura, V. Reveret, M. Sauvage, F. Simoens, and L. Vigroux, „The Herschel/PACS 2560 bolometers imaging camera”, Proc. SPIE 6265, 62650D (2006).
  • [84] J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. Gao, T. Klapwijk, B. Voronov, and G. Gol'tsman, „Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers”, J.Appl. Phys. 100, 184103 (2006).
  • [85] G. N. Gol'tsman, Yu. B. Vachtomin, S. V. Antipov, M. I. Finkel, S. N. Maslennikiv, K. V. Smirnov, S. L. Poluakov, S. I. Svechnikov, N. S. Kaurova, E. V. Grishina, and В. М. Voronov, „NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers”, Proc. SPIE 5727, 95-106 (2005).
  • [86] K. S. Il'in, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol'tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, „Picosecond hot-electron energy relaxation in NbN superconducting photodetectors”, Appl. Phys. Lett. 76, 2752-2754 (2000).
  • [87] A. D. Semenov, G. N. Gol'tsman, and R. Sobolewski, „Hotelectron effect in semiconductors and its applications for radiation sensors”, Semicon. Sci. Technol. 15, R1-R16 (2002).
  • [88] E. M. Gershenson, M. E. Gershenson, G. N. Goltsman, B. S. Karasik, A. M. Lyul'kin, and A. D. Semenov, „Ultra-fast superconducting electron bolometer", J. Tech. Phys. Lett. 15, 118-119 (1989).
  • [89] Y. Gousev, G. Gol'tsman, A. Semenov, E. Gershenzon, R. Nebosis, M. Heusinger, and K. Renk, „Broad-band ultrafast superconducting NbN detector for electromagnetic-radiation”, J.Appl. Phys. 75, 3695-3697 (1994).
  • [90] A. J. Kreisler and A. Gaugue, „Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range”, Supercond. Sci. Technol. 13, 1235-1245 (2000).
  • [91] M. Lindgren, M. Currie, С. Williams, T. Y. Hsiang, P. M. Fauchet, R. Sobolewsky, S. H. Moffat, R. A. Hughes, J. S. Preston, and F. A. Hegmann, „Intrinsic picosecond response times of Y-Ba-Cu-0 superconducting photoresponse," Appl. Phys. Lett. 74, 853-855 (1999).
  • [92] M. V. Lyatti, D. A. Tkachev, and Yu. Ya. Divin, „Signal and noise characteristics of a terahertz frequency-selective Yba2Cu3O7-5 Josephson detector, Techn. Phys. Lett. 32, 860-862 (2006).
  • [93] K. Irwin, „An application of electrothermal feedback for highresolution cryogenic particle-detection”, Appl. Phys. Lett. 66, 1998-2000 (1995).
  • [94] W. Duncan, W. S. Holland, M. D. Audley, M. Cliffe, T. Hodson, B. D. Kelly, X. Gao, D. С. Gostick, M. Macintosh, H. McGregor, T. Peacocke, K. D. Irwin, G. С. Hilton, S. W. Deiker, J. Beier, С. D. Reintsema, A. J. Walton, W. Parkes, T. Stevenson, A. M. Gundlach, С. Dunare, and P. A. R. Ade, „SCUBA-2: Developing the detectors”, Proc. SPIE 4855, 19-29 (2003).
  • [95] A. J. Walton, W. Parkes, J. G. Terry, С. Dunare, J. Т. М. Stevenson, A. M. Gundlach, G. С. Hilton, K. D. Irwin, J. N. Ullom, W. S. Holland, W. Duncan, M. D. Audley, P. A. R. Ade, R. V. Sudiwala, and E. Schulte, „Design and fabrication of the detector technology for SCUBA-2”, IEE Proc.-Sci. Meas. Technol. 151, 119-120 (2004).
  • [96] A.-D. Brown, D. Chuss, V. Mikula, R. Henry, E. Wollack, Y. Zhao, G. С. Hilton, and J. A. Chervenak, „Auxiliary components for kilopixel transition edge sensor arrays”, Solid State Electron. 52, 1619-1624 (2008).
  • [97] S. Lee, J. Gildemeister, W. Holmes, A. Lee, and P. Richards, „Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK”, Appl. Opt. 37, 3391-3397 (1998).
  • [98] H. F. С Hoevers, A. C. Bento, M. P. Bruijn, L. Gottardi, M. A. N. Korevaar, W. A. Mels, and P. A. J. de Korte, „Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer”, Appl. Phys. Lett. 77, 4422-4424 (2000).
  • [99] M. D. Audley, D. M. Glowacka, D. J. Goldie, A.N. Lasenby, V N. Tsaneva, S. Withington, P. K. Grimes, С. E. North, G. Yassin, L. Piccirillo, G. Pisano, P. A. R. Ade, G. Teleberg, K. D. Irwin, W. D. Duncan, C. D. Reintsema, M. Halpern, and E. S. Battistellik, „Tests of finline-coupled TES bolometers for COVER”, Digest IRMMW-THz-2007 Conf., 180-181, Cardiff, 2007.
  • [100] J. A. Chervenak, K. D. Irwin, E. N. Grossman, J. M. Martinis, С. D. Reintsema, M. E. Huber, „Superconducting multiplexer for arrays of transition edge sensors", Appl. Phys. Lett. 74, 4043-4045 (1999).
  • [101] P. J. Yoon, J. Clarke, J. M. Gildemeister, A. T. Lee, M. J. Myers, P. L. Richards, J. T. Skidmore, „Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors”, Appl. Phys. Lett. 78, 371-373 (2001).
  • [102] K. D. Irvin, „SQUID multiplexers for transition-edge sensors”, Physica С 368, 203-210 (2002).
  • [103] K. D. Irwin, M. D. Audley, J. A. Beall, J. Beyer, S. Deiker, W. Doriese, W. D. Duncan, G. С. Hilton, W. S. Holland, С. D. Reintsema, J. N. Ullom, L. R. Vale, and Y. Xu, „In-focal-plane SQUID multiplexer", Nuclear Inst. Methods Phys. Research A520, 544-547 (2004).
  • [104] K. D. Irvin and G. С. Hilton, „Transition-edge sensors”, in Cryogenic Particle Detection, pp. 63-149, edited by С. Enss, Springer-Verlag, Berlin, 2005.
  • [105] The SQUID Handbook, Vol. II: Applications, edited by J. Clarke and A. I. Braginski, Wiley-VCH, Weinheim, 2006.
  • [106] W. S. Holland, W. Duncan, B. D. Kelly, K. D. Irwin, A. J. Walton, P. A. R. Ade, and E. I. Robson, „SCUBA-2: A new generation submillimeter imager for the James Clerk Maxwell Telescope”, Proc. SPIE 4855, 1-18 (2003).
  • [107] A. L. Woodcraft, M. I. Hollister, D. Bintley, M. A. Ellis, X. Gao, W. S. Holland, M. J. Macintosh, P. A. R. Ade, J. S. House, С. L. Hunt, and R. V. Sudiwala, „Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array”, Proc. SPIE 6275, 62751F (2006).
  • [108] D. J. Benford, J. G. Steguhn, T. J. Ames, C. A. Allen, J. A. Chervenak, С. R. Kennedy, S. Lefranc, S. F. Maher, S. H. Moseley, F. Pajot, С. Rioux, R. A. Shafer, and G. M. Voellmer, „First astronomical images with a multiplexed superconducting bolometer array”, Proc. SPIE 6275, 62751С (2006).
  • [109] J. Gildemeister, A. Lee, and P. Richards, „A fully lithographed voltage-biased superconducting spiderweb bolometer”, Appl. Phys. Lett. 74, 868-870 (1999).
  • [110] J. Gildemeister, A. Lee, and P. Richards, „Monolithic arrays of absorber-coupled voltage-biased superconducting bolometers”, Appl. Phys. Lett. 77, 4040-4042 (2000).
  • [111] D. J. Benford, G. M. Voellmer, J. A. Chervenak, K. D. Irwin, S. H. Moseley, R. A. Shafer, G. J. Stacey, and J. G. Staguhn, „Thousand-element multiplexed superconducting bolometer arrays”, in Proc. Far-IR, Sub-MM, and MM Detector Workshop, vol. NASA/CP-2003-211 408, pp. 272-275, edited by J. Wolf, J. Farhoomand, and С. R. McCreight, 2003.
  • [112] A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, „Resonant and voltage-tunable terahertz detection in InGaAs/lnP nanometer transistors”, Appl. Phys. Lett. 89, 131926 (2006).
  • [113] W. Knap, V. Kachorowskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M. S. Shur, G. Simin, X. Hu, and M. A. Khan, С. A. Savior, and L. С. Brunal, „Nonresonant detection of terahertz radiation in field effect transistors”, J. Appl. Phys. 91, 9346-9353 (2002).
  • [114] Y. M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Sirmulis, J. Deverson, G. Valusis, F. Boeuf, and T. Skotnicki, „Non resonant response to terahertz radiation by submicron CMOS transistors”, IEICE Trans. Electr. E89-C, 993-998 (2006).
  • [115] G. С. Dyer, J. D. Crossno, G. R. Aizin, J. Mikalopas, E. A. Shaner, M. С. Wanke, J. L. Reno, and S. J. Allen, „A narrowband plasmonic terahertz detector with a monolithic hot electron bolometer”, Proc. SPIE 7215, 721503 (2009).
  • [116] F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bolaert, „Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer InGaAs transistors”, Appl. Phys. Lett. 89, 222109 (2006).
  • [117] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y. M. Meziani, С. Gallon, F. Boeuf, T. Skotnicki, and С. Fenouillet-Beranger, „Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006).
  • [118] V. I. Gavrilenko, E. V. Demidov, K. V. Marem'yanin, S. V. Morozov, W. Knap, and J. Lusakowski, „Electron transport and detection of terahertz radiation in a GaN/AIGaN submicrom field-effect transistor” Semiconductors 41, 232-234 (2007).
  • [119] Y. M. Meziani, M. Hanabe, A. Koizumi, T. Otsuji, and E. Sano „Self oscillation of the plasma waves in a dual grating gates HEMT device”, Int. Conf. Indium Phosphide and Related Materials, Conf. Proceedings, 534-537, Matsue, 2007.
  • [120] A. M. Hashim, S. Kasai, and H. Hasegawa, „Observation of first and third harmonic responses in two-dimensional AIGaAs/GaAs HEMT devices due to plasma wave interaction”, Superlattice Microstructures 44, 754-760 (2008).
  • [121] V. Ryzhii, A. Satou, I. Khmyrova, M. Ryzhii, T. Otsuji, V. Mitin, and M. S. Shur, „Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator”, J. Phys.: Conf. Series 38, 228-233 (2006).
  • [122] X. G. Peralta, S. J. Allen, M. С. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein „Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors”, Appl. Phys. Lett. 81, 1627-1630 (2002).
  • [123] M. Dyakonov, and M. S. Shur, „Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current”, Phys. Rev. Lett. 71, 2465-2468 (191
  • [124] M. Dyakonov and M. Shur, „Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid”, IEEE Trans. Electron Devices 43, 1640-1646 (1996).
  • [125] M. Shur and V. Ryzhii, „Plasma wave electronics”, Int. J. High Speed Electr. Syst. 13, 575-600 (2003).
  • [126] F. Teppe, A. El Fatimy, S. Boubanga, D. Seliuta, G. Valusis, B. Chenaud, and W. Knap, „Terahertz resonant detection by plasma waves in nanometric transistors”, Acta Phys. Polon. A 113, 815-820 (2008).
  • [127] Lisauskas A., D. Glaab, H. G. Roskos, E. U. Oejefors, and R. Pfeiffer: Terahertz imaging with Si MOSFET focal-plane arrays. Proc. SPIE 7215, 72150J (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0004-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.