PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion reliability of microelectronic devices. Pt. 2, Models and experimental results

Autorzy
Identyfikatory
Warianty tytułu
PL
Odporność korozyjna urządzeń mikroelektronicznych. Cz. 2, Modele i eksperymenty
Języki publikacji
EN
Abstrakty
EN
The first part of the paper, which has appeared in the March 2010 issue [43] covered a survey of fundamentals concerning susceptibility of current copper-based printed and integrated circuit boards and their limitations. It also introduced the failure rate of microelectronic systems caused by corrosion of their elements. In this Part II we will feature the modeling procedures of electrochemical corrosion of microelectronic materials and reliability diagnostic of manufactured products. Therefore, the possibility of applying the electrochemical impedance spectroscopy is presented. Results of performed experiments are also demonstrated. They attested that the corrosion is one of the most critical degrading mechanisms that pose direct threat to the structural integrity of microelectronic products and integrated devices.
PL
Część 2 artykułu poświęcona jest odporności korozyjnej elementów i urządzeń mikroelektronicznych. Podana została miara w postaci stopnia uszkodzeń mikroelektronicznych układów powodowanych przez korozję ich elementów. Korozja stanowi jeden z najbardziej krytycznych mechanizmów degradacji, które stanowią bezpośrednie zagrożenie co do integralności mikroelektronicznych wyrobów oraz elementów scalonych. Ich czas poprawnego działania jest ograniczany głównie przez destrukcję dokładności wymiarów elementów odgrywających istotny czynnik konstrukcyjny i układowy. Dzieje się tak dlatego, że połączenia między różnymi elementami i częściami składowymi muszą być stale takie same, jak zostały zaprojektowane odpowiednio do środowiska, w którym urządzenie działa. Ponadto, sprawą najważniejszą jest dostępność mało stratnych, mało kosztownych a także łatwo wytwarzanych elementów, które mogą wytrzymać podwyższone temperatury stosowane podczas ich laminowania oraz procesu oczyszczania a zarazem nie mogą być przyczyną ich degradacji z upływem czasu.
Rocznik
Strony
11--18
Opis fizyczny
Bibliogr. 44 poz., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of the Theory of Electrical Engineering and Informatic-Measurement Systems.
Bibliografia
  • [1] Minges M. L.: Electronic Materials Handbook: Packaging. ASM International Handbook Committee, 1989.
  • [2] Nawla H. S. (ed.): Encyclopedia of Nanosicence and Nanotechnology. Vols 1-10, American Scientific Publishers, New York, 2004.
  • [3] Datta М., Osaka Т., Schultze W.: Microelectronic packaging. CRC Press, Boca Raton, 2005.
  • [4] Di Ventra M., Pershin Y. V., Chua L. O.: Circuit elements with memory: memristors, memcapacitors and meminductors. Proceedings of the IEEE, vol. 97, 2009, pp. 1717-1721.
  • [5] Hillman C., Castillo В., Pecht M.: Diffusion and absorption of corrosive gases in electronic encapsulants. Microelectronics Reliability, vol. 43, no. 4, 2003, pp. 635-643.
  • [6] Gonzalez-Cuenca M., Zipprich W., Boukamp B. A., Pudmich G., Tietz F.: Impedance Studies on Chromite-Titanate Porous Electrodes under Reducing Conditions. Fuel Cells, vol. 1, 2001, pp. 256-264.
  • [7] Lakshminarayanan V.: Minimizing Failures in Electronic Systems by Design. EDN, August 3, 2000.
  • [8] Baum C. E., Stone A. P., Tyo J. S.: Ultra-Wideband Short-Pulse Electromagnetics 8. Springer New, York, 2007.
  • [9] Jourdan A., Morel В.: Recent developments in fluorine chemistry for microelectronic applications: Some examples at Comurhex. Journal of Fluorine Chemistry, vol. 107, no. 2, 2001, pp. 255-264.
  • [10] Frankel S., Braithwaite J. W.: Corrosion of Microelectronic and Magnetic Data-Storage Devices. Chapter 15 in Corrosion Mechanisms in Theory and Practice, 2nd edition, P. Marcus and J. Oudar, ed., Marcel Dekker, Inc., New York, 2002.
  • [11] Braithwaite J., Sorensen N. R. t, Robinson D., Chen K. S., Bogdan C.: A Modeling Approach for Predicting the Effects of Corrosion on Electrical-Circuit Reliability. Report SAND2003-0359, Sandia National Laboratories Albuquerque, February 2003.
  • [12] Klinger D. J.: Humidity acceleration factor for plastic packaged electronic devices. Quality and Reliability Engineering International, vol. 7, no. 5 pp. 365-370.
  • [13] Marcus Ph.: Corrosion Mechanism in Theory and Practice. (2nd ed.), CRC Press, New York, 2002.
  • [14] Orazem M. E., Tribollet В.: Electrochemical Impedance Spectroscopy J. Wiley, New York, 2008.
  • [15] Hillman C., Castillo В., Pecht M.: Diffusion and absorption of corrosive gases in electronic encapsulants. Microelectronics Reliability, vol. 43, no. 4, 2003, pp. 635-643.
  • [16] Kelly R. G., Scully J. R., Shoesmith D. W., Buchheit R. G.: Electrochemical Techniques in Corrosion Science and Engineering. Marcel Decker AG, Basel, 2004.
  • [17] Perez N.: Electrochemistry and Corrosion Science. Kluwer Academic Publisher, Basel, 2004.
  • [18] Schweitzer Ph. A.: Encyclopedia of Corrosion technology, 2nd ed. revised and expanded. Marcel Decker AG, Basel, 2004.
  • [19] Roberge P. R.: Handbook of Corrosion Engineering. McGraw-Hill Companies, Inc., New York, 2000.
  • [20] Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability Charles A. Harper, Electronic Materials and Processes Handbook., McGraw-Hill, new York, 2005.
  • [21] Puligandla Viswanadham, Corrosion and Related Phenomena in Portable Electronic Assemblies. ASM, Nokia Research Center, Sridhar Canumalla, 2006.
  • [22] Hillman C.: A Novel Approach to Identifying and Validating Electrical Leakage in Printed Circuit Boards through Magnetic Current Imaging, University of Maryland, 2004.
  • [23] Trzaska M., Trzaska Z.: Electrochemical Impedance Spectroscopy in Materials Science, (in Polish). Publishing Office of Warsaw University of Technology, Warsaw, 2010 (in print).
  • [24] Tan С. W., Daud A. R., Yarmo M. A.: Corrosion study at Cu-Al interface in microelectronics packaging. Applied Surface Science, vol. 191, no. 1-4, 2002, pp. 67-73.
  • [25] Bockris J. O'M., Reddy A. K. N., Gamboa-Aldeco M. E.: Modern Electrochemistry 2A: Fundamentals of Electrodics. Springer, New York, 2008.
  • [26] Yeoh Lai Seng: Reliability of microelectronic packages with tinplated copper leads under high humidity operating environment. Electronics Packaging Technology Conference, EPTC, no. 6-8, 2006, pp. 894-899.
  • [27] Ekekwe N.: Electrochemical Impedance Spectroscopy: Corrosion Behavior Application: Theory, Modeling, and Experimentation. VDM Verlag, Saarbrucken, Germany , 2009.
  • [28] Trzaska M.: Electrical and thermal conductivities of nano-and microcrystalline copper and composite thin-layer electrodeposits Elektronika nr 3, 2009, ss. 109-115.
  • [29] Trzaska M., Trzaska Z.: Control of Copper Thin-layer Coatings with Electrochemical Impedance Spectroscopy, Proc. ACC'07 New York, (2007), 2837-2843.
  • [30] Trzaska Z.: Analysis and Design of Electric Circuits, (in Polish) Publishing Office of Warsaw University of Technology, Warsaw, 2010 (in print).
  • [31] Trzaska Z.: Characterization of Particular Circuit Elements Requisited for Studying the Electrochemical Processes, 8th International Workshop „Computational Problems of Electrical Engineering (CPEE)”, Wilkasy, Poland, September, 14-16, 2007.
  • [32] Trzaska M., Trzaska Z.: Straightforward energetic approach to studies of the corrosion performance of nano-copper thin-layers coatings. Journal of Applied Electrochemistry, 37 (2007), 1009-1014.
  • [33] Ernst K.-H., Grman D., Hauert R., Holländer E.: Fluorine-Induced corrosion of aluminium microchip bond pads: An XPS and AES analysis. Surface and Interface Analysis vol. 21, 2004, no. 10, pp. 691-696.
  • [34] Vargas O. L., Valdez S. В., Veleva M. L., Zlatev K. R., Schorr W. M., Terrazas G. J.: The corrosion of silver in indoor conditions of an assembly process in the microelectronics industry. Anti-Corrosion Methods and Materials, vol. 56, 2009, no. 4, pp. 218-225.
  • [35] Bogorosh A., Voronov S., Larkin S., Karachiun V., Višniakov N., Novickij J., Šcekaturoviene D.: Modeling of Defects in Electronic Navigation Devices Operating in Extreme Conditions. Research Journal of Vilnius Gediminas Technical University, Aviation, vol. 12, 2008, no. 1, pp. 3-9.
  • [36] Card J. C., Cannon R. M., Saiz E., Tomsia A. P., Ritchie R. O.: On the physics of moisture-induced cracking in metal-glass (copper-silica) interfaces. J. Appl. Phys. Vol. 102, 053516 (2007).
  • [37] Kuczmik et al J.: Analysis of degradation mechanisms in latticematched InAlN/GaN highelectron-mobility transistors. Journal of Applied Physics, Vol. 106, 2009, pp.124503 -124510.
  • [38] Ling Wu, Rochus V., Noels L., Golinval J. C.: Influence of adhesive rough surface contact on microswitches. Journal of Applied Physics, vol. 106, 2009, pp.113502-113512.
  • [39] Downey B. P., Datta S., Mohney S. E.: Numerical study of reduced contact resistance via nanoscale topography at metal/semiconductor interfaces. Semicond. Sci. Technol. vol. 25, 2010. pp. 015010-015014.
  • [40] Pecht M., Lall P., Whelan S. J.: Temperature dependence of microelectronic device failures. Quality and Reliability Engineering International, vol. 6, 2007, no. 4, pp. 275-284.
  • [41] Tour J. M., He Т.: Electronics: The fourth element. Nature, vol. 453, 2008, pp.42-43.
  • [42] Trzaska M., Trzaska Z.: Electrochemical Impedance Spectroscopy in Material Science and Engineering (in Polish), Publishing Office of the Warsaw University of Technology, Warsaw, 2009.
  • [43] Trzaska Z.: Corrosion reliability of microelectronic devices. Part I: Fundamentals. Elektronika, 2010, nr 3.
  • [44] Szmidt J.: Electronic Properties of Nanocrystalline Layers of Wide-Gap Materials. Chaos, Solitons and Fractals, vol.10, 1999, no. 12, pp. 2099-2152.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0004-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.