PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kwantowe lasery kaskadowe : podstawy fizyczne

Identyfikatory
Warianty tytułu
EN
Ouantum cascade lasers fundamentals
Języki publikacji
PL
Abstrakty
PL
W pracy omówiono zasady działania, właściwości i podstawowe zastosowania kwantowych laserów kaskadowych. Przedstawiono także historię ich rozwoju i opisano podstawowe konstrukcje laserów działających w zakresie średniej i dalekiej podczerwieni. Kolejnym zagadnieniem, które zostało przedyskutowane są problemy materiałowe związane z wytwarzaniem laserów kaskadowych.
EN
The paper discusses quantum cascade lasers fundamentals, their properties and basie applications. A brief history of mid-infrared and far-infrared cascade lasers development is presented and basic device designs are reviewed. Finally the materials related aspects and fabrication of cascade lasers are detailed.
Rocznik
Strony
30--43
Opis fizyczny
Bibliogr. 71 poz., wykr.
Twórcy
autor
autor
  • Politechnika Łódzka, Instytut Fizyki
Bibliografia
  • [1] J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, S. Blaser: Bound-to-Continuum and Two-Phonon Resonance Quantum-Cascade Lasers for High Duty Cycle, High-Temperature Operation. IEEE Journal Of Quantum Electronics, vol. 38, no 6, 553-545, 2002.
  • [2] J. Faist, F. Capasso, C. Sirtori, D. Sivco, A. Cho: Quantum cascade lasers. Intersubband Transitions in OuantumWells: Physics and Device Applications II, H. Liu, F. Capasso, Eds. New York: Academic, vol. 66, ch. 1, pp. 1-83. 2000.
  • [3] F. Capasso, A. Tredicucci, C. Gmachl, D. Sivco, A. Hutchinson, A. Cho, G. Scamarcio: High-performance superlattice quantum cascade lasers. IEEE J. Select. Topics Quantum Electron., vol. 5, 792-807, 1999.
  • [4] J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S-N. G. Chu, A. Y. Cho: Short wavelength (λ-3.4 μm) quantum cascade laser based on strained compensated InGaAs/AllnAs. Appl. Phys. Lett. 72, 680-684, 1998.
  • [5] D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, S. Menzel: InGaAs/AlAsSb/lnP quantum cascade lasers operating at wavelength close to 3 μm. Appl. Phys. Lett. 90, 021108-021111, 2007.
  • [6] M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink: Shortwavelength (λ-3.05 μm) InP-based strain compensated quantum cascade laser. Appl. Phys. Lett. 90, 051111-051114, 2007.
  • [7] J. Devenson, D. Barate, O. Cathabard, R. Teissier, A. N. Baranov: Very short wavelength (λ=3.1 - 3.3 μm) quantum cascade lasers. Appl. Phys. Lett. 89, 191115-191117, 2006.
  • [8] J. Devenson, R. Teissier, O. Cathabard, A. N. Baranov: InAs/AlSb quantum cascade lasers emitting below 3 μm. Appl. Phys. Lett. 90, 111118-111121, 2007.
  • [9] J. Devenson, R. Teissier, O. Cathabard, and A. N. Baranov: InAs/AlSb quantum cascade lasers emitting at 2.75-2.97 μm. Appl. Phys. Lett. 91, 251102-251105, 2007.
  • [10] H. M. Ng, C. Gmachl, S. N. G. Chu, A. Y. Cho: Molecular beam epitaxy of GaN/AlxGa1-xN superlattices for 1.52-4.2 μm intersubband transitions. Journal of Crystal Growth 220 (2000) 432-438.
  • [11] I. I. Kim, E. Korevaar: Availability of free-space optics (FSO) and hybrid FSO/RF systems. SPIE vol. 4530, 84-95, Nov 2001.
  • [12] Haim Manor and Shlomi Arnon: Performance of an optical wireless communication system as a function of wavelength. APPLIED OPTICS vol. 42, no 21, 4285-4294, 20 July 2003.
  • [13] F. K. Tittel, Y. Bakhirkin, R. F. Curl, A. Kosterev , R. Lewicki, S. So, G. Wysocki: Ouantum Cascade Laser based Trace Gas sensor Technology: Recent Advances and Applications. IEEE SENSORS 2007, Conference pp. 1334-1336.
  • [14] A. A. Kosterev, F. K. Tittel: Chemical Sensors Based on Quantum Cascade Lasers. IEEE JOURNAL OF OUANTUM ELECTRONICS, vol. 38, no 6, JUNE 2002, pp 582-591.
  • [15] M. Pushkarsky, M. Weida, T. Day, D. Arnone, R. Pritchett: Compact mid-IR Breath Analysis System IEEE SENSORS 2007 Conference.
  • [16] www.lpi.usra.edu/rascal/forum2006/presentations/1015_gatech_paper.pdf.
  • [17] L. Esaki, R. Tsu: Superlattice and negative differential conductivity in semiconductor IEM J. Res. Develop., vol. 14, pp. 61-65, 1970.
  • [18] R. F. Kazarinov, R. A. Suris: Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Fiz. Tekh. Poluprov., vol. 5, pp. 797-800, 1971; transl. in Sov. Phys. Semicond., vol. 5, pp. 707-709, 1971.
  • [19] R. F. Kazarinov, R. A. Suris: Electric and electromagnetic properties of semiconductors with a superlattice. Fiz. Tekh. Poluprov., vol. 6, pp. 148-62, 1972; transl. in Sov. Phys. Semiconductors, vol. 6. pp. 120-131, 1972.
  • [20] R. Tsu, L. Esaki: Tunneling in a finite superlattice. Appl. Phys.Lett, vol. 22, pp. 562-564, 1973.
  • [21] L. L. Chang, L. Esaki, R. Tsu: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett., vol. 24, pp. 593-595, 1974.
  • [22] R. Dingle, W. Wiegmann, C. H. Henry: Ouantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Physics Review Letters, 33 (14), 827-830, 1974.
  • [23] M. Helm, P. England, E. Colas, F. DeRosa, S. J. Allen: Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling. Physics Review Letters, 63 (1) , 74-77, 1989.
  • [24] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: Continuous wave operation of a vertical transition quantum cascade laser above T=80K. Appl. Phys. Lett. 67, 3057 (1995).
  • [25] J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S. N. G. Chu, A. Y. Cho: High power mid-infrared (λ=5 μm) quantum cascade lasers operating above room temperature, Applied Physics Letters, 68 (26), 3680-3682, 1996.
  • [26] G. Scamarcio, F. Capasso, C. Sirtori, J. Faist, A. Hutchinson, D. Sivco, A. Cho: High-power infrared (8-micrometer wavelength) superlattice lasers. Science, vol. 276, pp. 773-776, 1997.
  • [27] A. Tredicucci, F. Capasso, C. Gmachl, D. Sivco, A. Hutchinson, A. Cho, J. Faist, G. Scamarcio: High-power inter-miniband lasing in intrinsic superlattices. Appl. Phys. Lett., vol. 72, pp. 2388-2390,1998.
  • [28] A. Tredicucci, F. Capasso, C. Gmachl, D. L. Sivco, A. L. Hutchinson, A. Y. Cho: High performance interminiband quantum cascade laser with graded superlattices. Appl. Phys. Lett., vol. 73, pp. 2101-2103, 1998.
  • [29] D. Hofstetter, M. Beck, T. Aellen, J. Faist: High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm. Appl. Phys. Lett. 78, 396 (2001).
  • [30] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Continuous-wave operation of a midinfrared semiconductor laser at room-temperature. Science 295, 301 (2002).
  • [31] J. Faist, M. Beck, T. Aellen, E. Gini, Appl. Phys. Lett: Quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett., vol. 78, no 2, 8 January 2001.
  • [32] M. Rochat, D. Hofstetter, M. Beck, J. Faist: Long wavelength (λ~16 μm), room-temperature, single frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett. 79,4271 (2001).
  • [33] S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, J. Faist: Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ~5.4 μm. Appl. Phys. Lett. 86, 41109(2005).
  • [34] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan: Band parameters for III-V compound semiconductors and their alloys. JOURNAL OF APPLIED PHYSICS, vol. 89, no 11, 1 JUNE 2001.
  • [35] http://www.ioffe.ru/SVA/NSM/Semicond/index.html.
  • [36] R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, A. Y. Cho: Farinfrared surface-plasmno quantum-cascade lasers at 21.5 μm and 24 μm wavelenglengths. Appl. Phys. Lett., 78: 2620-2622, 2001.
  • [37] M. Beck, J. Faist, U. Oesterle, M. Ilegems: Buried Heterostructure Ouantum Cascade Lasers with a Large Optical Cavity Waveguide. IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 12, no 11, November 2000.
  • [38] J. S. Yu, A. Evans, J. David, L. Doris, S. Slivken, M. Razeghi: Cavity length effects of high temperature continuous-wave characteristics in quantum cascade lasers. Appl. Phys. Lett. 83, 5136-5138 (2003).
  • [39] S. Slivken, Z. Huang, A. Evans, M. Razeghi: High-power (~9 μm) quantum cascade lasers. Appl. Phys. Lett. 80, 4091 (2002).
  • [40] M. Razeghi, A. Evans, Y. Bai, J. Nguyen, S. Slivken, S. R. Darvish, K. Mi: Current status of high performance quantum cascade lasers at the Center for Ouantum Devices. 2007 International Conference on Indium Phosphide and Related Materials Conference 14-18, May 2007 Matsue, Japan.
  • [41] C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle: GaAs/AlxGa1-xAs quantum cascade lasers. Appl. Phys. Lett., vol. 73, pp. 3486-3488, 1998.
  • [42] C. Sirtori, H. Page, C. Becker, V. Ortiz: GaAs-AIGaAs Ouantum Cascade Lasers: Physics, Technology, and Prospects. IEEE Journal of quantum electronics, vol. 38, no. 6, June 2002, pp. 547-558.
  • [43] H. Page, C. Backer, A. Robertson, G. Glastre, V. Ortiz, and C. Sirtori: 300K operation of a GaAs-based quantum-cascade laser at 9 μm. Appl. Phys. Lett. 78, 3529-2531 (2001).
  • [44] H. Page, S. Dhillon, M. Calligaro, C. Becker, V. Ortiz, C. Sirtori: Improved CW Operation of GaAs-Based QC Lasers: Tmax=150K. IEEE Journal of quantum electronics, vol. 40, no 6, June 2004, pp. 665-672.
  • [45] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Lotti, F. Rossi: Terahertz semiconductor heterostructure laser. Nature, vol. 417, no 156, pp. 156-159, 2002.
  • [46] B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, J. L. Reno. 3.4 THz quantum cascade laser based on longitudinal-opticalphonon scattering for depopulation. Applied Physics Letters, 82 (7), 1015-1017, 2003.
  • [47] B. S. Williams, S. Kumar, Q. Hu, J. L. Reno: High-power terahertz quantum-cascade lasers. Electronics Letters, 42(2), 89-91, 2006.
  • [48] B. S. Williams, S. Kumar, Q. Hu, J. L. Reno: Operation of terahertz quantum-cascade lasers at 164K in pulsed mode and at 117K in continuous-wave mode. Opt. Exp., vol. 13, no 9, p. 3331, 2005.
  • [49] C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, J. Faist: Ouantum cascade lasers operating from 1.2 to 1.6 THz. Appl Phys. Lett., vol. 91, no. 131122, pp. 1-3, 2007.
  • [50] A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, J. L. Reno: Real-time terahertz imaging over a standoff distance (>25 meters). Appl. Phys. Lett., vol. 89, no. 141125, pp. 1-3, 2006.
  • [51] G. Scalari, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie: Laser emission at 830 and 960 GHz from quantum cascade structures. Zaprezentowane na ITQW2007, Ambleside, U. K. Sep. 10-14, 2007, nieopublikowane.
  • [52] H. Daembkes, H. J. Herzog, H. Jorke, H. Kibbel, E. Kasper: The n-channel SiGe/Si modulation-doped field-effect transistor. IEEE Transactions on Electron Devices, 33 (5), 633-638, 1983.
  • [53] G. L. Patton, S. S, Lyer, S. L. Delage, S. Tiwari, J. M. C. Stork: Silicon-germanium base heterojunction bipolar transistors by-molecular beam epitaxy. IEEE Electron Device Letters, 9 (4), 165-167, 1998.
  • [54] L. Friedman, R. A. Soref, G. Sun, Y Lu: Theory of the Strain-Symmetrized Silicon-Based Ge-Si Superlattice Laser. IEEE Journal of Selected Topics in Ouantum Electronics. vol. 4, no 6, 1998.
  • [55] L. Diehl, S. Mentese, E. Muller, D. Grutzmacher, H. Sigg, U. Gennser, I. Sagnes, Y. Campidelli, O. Kermarrec, D. Bensahel, J. Faist: Electroluminescence from straincompensated SiO.2GeO.8/Si quantum-cascade structures based on a bound to-continuum transition. Applied Physics Letters, 81 (25), 4700-4702, 2000.
  • [56] G. Sun, Y. Lu, J. B. Khurgin: Intersubband lasers based on the subband dispersion of inverted mass. Optics Express,vol. 2, no 4, 143-150, 1998.
  • [57] S. A. Lynch, R. Bates, D. J. Paul, D. J. Norris, A. G. Cullis, Z. Ikonić, R. W. Kelsall, P. Harrison, D. D. Arnone, C. R. Pidgeon: Intersubband electroluminescence from Si/SiGe cascade emitters at terahertz frequencies. Applied Physics Letters, 81 (9), 1543-1545, 2002.
  • [58] R. Bates, S. A. Lynch, D. J. Paul, Z. Ikonić, R. W. Kelsall, P. Harison, S. Liew, D. J. Norris, A. G. Cullis, W. R. Tribe, D. D. Arnone: Interwell intersubband electroluminescene from Si/SiGe quantum cascade emitters. Applied Physisc Letters, 83 (20), 4092-4094, 2003.
  • [59] P. Murzyn, C. R. Pidgeon, C. R. Wells: Picosecond intersubband dynamics in p-Si/SiGe quantum well emitter structures. Appl. Phys. Lett. Vol. 80 (8), pp. 1456-1458, 2002.
  • [60] G. Chen, A. Shakouri: Heat Transfer in Nanostructures for Solid State Energy Conversion. Journal of Heat Transfer APRIL 2002, vol. 124 p. 242-252.
  • [61] G. Chen: Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958-14973 (1998).
  • [62] X. Y. Yu, G. Chen, A. Verma, J. S. Smith: Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure. Appl. Phys. Lett. 67, 3554, (1995).
  • [63] C. Sirtori, H. Page, C. Backer, V. Ortiz: GaAs-AlGaAs Quantum Cascade Lasers : Physics, Technology and Prospects. IEEE journal of quantum electronics, vol. 38, no. 6, June 2002 547-558.
  • [64] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Continious Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature. SCIENCE vol. 295 11 January 2002 pp. 301-304.
  • [65] R. Teissier, D. Barate, A. Vicet, C. Alibert, A. N. Baranov, X. Marcadet, C. Renard, M. Garcia, C. Sirtori, D. Revin, J. Cockburn: Room temperature operation of InAs/AlSb quantum cascade lasers. Appl. Phys. Lett., 85, 167 92004).
  • [66] L. Diehl, S. Mentese, E. Müller, D. Grützmacher, H. Sigg, U. Gennser I. Sagnes, Y. Campidelli, O. Kermarrec, D. Bensahel, J. Faist: Electroluminescence from strain-compensated SiO.2GeO.8/Si quantum-cascade structures based on a bound-to-continuum transition. Appl. Phys. Lett. 81, 4700 (2002).
  • [67] H. Page, S. Dhillon, M. Calligaro, C. Becker, V. Ortiz, C. Sirtori: Improved CW Operation of GaAs-Based QC Lasers: Tmax=150K. IEEE Journal of quantum electronics, vol. 40, no 6, June 2004 pp. 665-672.
  • [68] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior: Continuous-wave operation of a mid-infrared semiconductor laser at room-temperature. Science 295, 301 (2002).
  • [69] D. Hofstetter: Surface-emitting 10.1 μm quantum cascade distributed feedback lasers. Phvs. Lett. vol. 75, pp. 3769-3771, 1999.
  • [70] L. Guipeng, P. Chuan, H. Q. Le, P. Shin-Shem, L. Hao , H. Wen-Ye, B. Ishaug, Z. Jun: Broadly wavelength-tunable external cavity, mid-infrared quantum cascade lasers. IEEE journal of quantum electronics, vol. 38, no 5, May 2002, 486-494.
  • [71] J. Heinrich, R. Langhans, J. Seufert, S. Höfling, A. Forchel: Ouantum Cascade Microlasers With Two-Dimensional Photonic Crystal Reflectors. IEEE photonics technology letters, vol. 19, no 23, December 1, 2007, pp. 1937-1939.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0003-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.