PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and mechanical properties of friction stir butt welded dissimilar Cu/CuZn30 sheets

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study is to show the feasibility for joining of dissimilar commercial pure copper sheet to brass (CuZn30) sheet by friction stir welding (FSW). Design/methodology/approach: In this study, dissimilar Cu and CuZn30 sheets was butt joined by FSW. It has been investigated microstructure properties, microhardness, tensile and bending tests, in order to evaluate the joint performance and the weld zone characteristics of dissimilar copper/brass (Cu/CuZn30) joints. Findings: The tensile strength of dissimilar Cu/CuZn30 joints was found to be about same and 46% lower than that of Cu parent metal (PM) and CuZn30 PM, respectively. The root and the surface bend strengths of the joints were found to be about 47% higher and 31% lower than that of Cu PM and CuZn30 PM, respectively. The average hardness at the top and bottom lines were found to be about 92 Hv0.1 and 102 Hv0.1, respectively. These hardness values are higher and lower than that of Cu PM and CuZn30 PM, respectively. Different microstructure zones were determined by optical microscopy. It was illustrated that the stirred zone (SZ) exposed to the two main structures: (1) recrystallized grains of CuZn30 and (2) intercalated swirl and vortex-like structure which can be characterized both the recrystallized brass grains and copper layers. Research limitations/implications: In this study, the limited FSW parameters were employed. Further studies are needed to evaluate the effects of welding parameters of dissimilar Cu/CuZn30 on the joining properties to establish the optimal weld parameters. Practical implications: FSW is successfully applied to the butt joining of dissimilar Cu and CuZn30 alloy sheets. Originality/value: This research is one of the preliminary studies on the detailed examinations of the microstructural and mechanical properties of the dissimilar Cu/CuZn joint by FSW.
Rocznik
Strony
182--186
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
autor
  • Department of Materials Technology, Technology Faculty, Sakarya University, 54187 Sakarya, Turkey, huzun@sakarya.edu.tr
Bibliografia
  • [1] ASM Handbook, vol.6-CD, 1872-1876, USA, 1993.
  • [2] C. G. Andersson, R. E. Andrews, B. G. I. Dance, M. J. Russell, E. J. Olden, R. M. Samderson, A comparison of copper canister fabrication by the electron beam and friction stir processes, Proceedings of the 2nd International Symposium “Friction Stir Welding”, Gothenburg, 2000, CD-ROM.
  • [3] W. M. Thomas, E. D. Nicholas, J. C. Needham, M.G. Murch, P. Templesmith, C. J. Dawes, G. B. Patent Application No. 9125978.8, December 1991.
  • [4] G. Biallas, G. Braun, C. D. Donne, G. Staniek, W. Kaysser, Mechanical properties and corrosion behaviour of friction stir welded 2024-T4, Proceedings of the 1st International Symposium “Friction Stir Welding”, TWI, 1999, CD-ROM.
  • [5] J. Adamowski, M. Szkodo, Friction Stir Welds (FSW) of aluminium alloy AW6082-T6, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 403-406.
  • [6] M. Vural, A. Ogur, G. Cam, C. Ozarpa, On the friction stir welding of aluminium alloys EN AW 2024-0 and EN AW 5754-H22, Archives of Materials Science and Engineering 28/1 (2007) 49-54.
  • [7] P. Cavaliere, F. Panella, Effect of tool position on the fatigue properties of dissimilar 2024-7075 sheets joined by friction stir welding, Journal of Materials Processing Technology 206 (2008) 249-255.
  • [8] A. Barcellona, G. Buffa, L. Fratini, D. Palmeri, On microstructural phenomena occurring in friction stir welding of aluminium alloys, Journal of Materials Processing Technology 177 (2006) 340-343.
  • [9] S. T. Amancio-Filho, S. Sheikhi, J. F. dos Santos, C. Bolfarini, Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4, Journal of Materials Processing Technology 206 (2008) 132-142.
  • [10] J. A. Esparza, W. C. Davis, E. A. Trillo, L. E. Murr, Friction-stir welding of magnesium alloy AZ31B, Journal of Materials Science Letters 21 (2002) 917-920.
  • [11] B. M. Darras, M. K. Khraisheh, F. K. Abu-Farha, M. A. Omar, Friction stir processing of commercial AZ31 magnesium alloy, Journal of Materials Processing Technology 191 (2007) 77-81.
  • [12] T. J. Lienert, W. L. Stellwag, B. B. Grimmett, R. W. Warke, Friction Stir Welding Studies on Mild Steel, Welding Journal, Research Supplement 82/1 (2003) 1-9.
  • [13] A. P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, Structure, properties, and residual stress of 304L stainless steel friction stir welds, Scripta Materialia 48 (2003) 1289-1294.
  • [14] W. B. Lee, C. Y. Lee, W. S. Chang, Y. M. Yeon, S. B. Jung, Microstructural investigation of friction stir welded pure titanium, Materials Letters 59 (2005) 3315-3318.
  • [15] H. Uzun, Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite, Materials and Design 28 (2007) 1440-1446.
  • [16] W. B. Lee, S. B. Jung, The joint properties of copper by friction stir welding, Materials Letters 58 (2004) 1041-1046.
  • [17] G. M. Xie, Z. Y. Maa, L. Geng, Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper, Scripta Materialia 57 (2007) 73-76.
  • [18] T. Sakthivel, J. Mukhopadhyay, Microstructure and mechanical properties of friction stir welded copper, Journal of Materials Science 42 (2007) 8126-8129.
  • [19] H. S. Park, T. Kimura, T. Murakamic, Y. Naganod, K. Nakata, M. Ushio, Microstructures and mechanical properties of friction stir welds of 60% Cu-40% Zn copper alloy, Materials Science and Engineering A 371 (2004) 160-169.
  • [20] C. Meran, The joint properties of brass plates by friction stir welding, Materials and Design 27 (2006) 719-726.
  • [21] H. Uzun, C. D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel, Materials and Design 26 (2005) 41-46.
  • [22] K. Kimapong, T. Watanabe, Friction Stir Welding of aluminum alloy to steel, Welding Journal 83/10 (2004) 277-282.
  • [23] J. Ouyang, E. Yarrapareddy, R. Kovacevic, Microstructural evolution in the friction stir welded 6061aluminum alloy (T6-temper condition) to copper, Journal of Materials Processing Technology 172 (2006) 110-122.
  • [24] A. C. Somasekharan, L. E. Murr, Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy, Materials Characterization 52 (2004) 49-64.
  • [25] Y. Li, E. A. Trillo, L. E. Murr, Friction-stir welding of aluminum alloy 2024 to silver, Journal of Materials Science Letters 19 (2000) 1047-1051.
  • [26] L. E. Murr, G. Sharma, F. Contreras, M. Guerra, S. H. Kazi, M. Siddique, R. D. Flores, D. J. Shindo, K. F. Soto, E. A. Trillo, C. Schmidt, J. C. Mcclure, J. G. Kaufman, T. J. Lienert, Joining Dissimilar Aluminum Alloys and Other Metals and Alloys by Friction Stir Welding, Proceedings of the TMS 2001 Annual Meeting “Aluminum Automotive and Joining Symposia” Aluminum 2001, New Orleans, 2001, 197-211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0003-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.