PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of boron impurity atoms on nickel ∑ 5 (012) grain boundary by first principles calculations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Impurity atoms in the grain boundary can be responsible for embrittlement or they can strengthen a material. In this work, we have modeled the effect of B impurity on ∑ 5 (012) symmetrical tilt grain boundary in Ni by using first principle quantum-mechanical calculations. The grains can either be pushed apart or pulled together depending on the size of the impurity and nature of the local relaxations. Design/methodology/approach: The calculations were carried out by using the Vienna ab-initio simulation package VASP with the projector augmented wave (PAW) potentials within generalized gradient approximation (GGA). K-space sampling is performed using a 2x2x1 Monkhorst Pack scheme for Brillouin-zone integration in all model systems. The Methfessel-Paxton smearing method with 0.1 eV smearing width is used for the determination of partial occupancies for each wave function. Findings: It is found that the extension of the nickel grain boundary is due to the repulsion of the segregated and neighboring B atoms. Moreover, the effects of tensile strength loaded uniaxially along the (012) direction are analyzed when the impurity atoms of B are substituted into the ∑ 5 (012) symmetrical tilt grain boundary in Ni. Our calculations are compatible with the other first principle calculations. Research limitations/implications: Cohesive energy calculations indicate that interstitial sites are preferred to substitutional sites and that B leads to cohesive enhancement. Originality/value: The effects of boron impurity atoms on nickel ∑ 5 (012) grain boundary by first principles calculations were evaluated.
Rocznik
Strony
177--181
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
autor
  • Department of Physics, Pamukkale University Kinikli Campus, 20020, Denizli, Turkey, hkart@pau.edu.tr
Bibliografia
  • [1] R. Rice, J. S. Wang, Embrittlement of interfaces by solute segregation, Materials Science Engineering A107 (1989) 23-40.
  • [2] R. Wu, A. J. Freeman, G. B. Olsen, First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion, Science 265 (1994) 376-380.
  • [3] W. T. Geng, A. J. Freeman, R. Wu, C. B. Geller, J. E. Raynolds, Embrittling and strengthening effects of hydrogen, boron, and phosphorus on a Σ5 nickel grain boundary, Physical Review B 60 (1999) 7149-7155.
  • [4] L. Zhong, R. Wu, A. J. Freeman, G. B. Olsen, Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron, Physical Review B62 (2000) 13938-13941.
  • [5] M. Sob L. G. Wang, V. Vitek, Local stability of higher-energy phases in metallic materials and its relation to the structure of extended defects, Computational Materials Science 8 (1997) 100-106.
  • [6] J. Frenkel, Z. Physics 7 (1926) 323.
  • [7] E. Orowon, Fracture and strength of solids, Reports on Progress in Physics 12 (1949) 185-190.
  • [8] L. Goodwin, R. J. Needs, V. Heine,A pseudopotential total energy study of impurity-promoted intergranular embrittlement, Journal of Physics: Condensed Matter 2 (1990) 351-365.
  • [9] T. Hong, J. R. Smith D. J. Srolovitz, Impurity effects on adhesion: Nb, C, O, B, and S at a Mo/MoSi2 interface, Physical Review B 47 (1993) 13615-13625.
  • [10] Y. M. Huang, J. C. Spence, O. F. Sankey, The effect of impurities on the ideal tensile strength of silicon, Philosophical Magazine A 70 (1994) 53-59.
  • [11] M. Sob, L. G. Wang, V. Vitek, Theoretical tensile stress in tungsten single crystals by full-potential first-principles calculations, Materials Science Engineering A 234 (1997) 1075-1079.
  • [12] W. Li, T. Wang, Elasticity, stability, and ideal strength of β-SiC in plane-wave-based ab initio calculations, Physical Review B 59 (1999) 3993-3999.
  • [13] G. L. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, F. Liu, K. Horikawa, M. Kanno, Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening, Physical Review B 73 (2006) 224115-224119.
  • [14] V. B. Deyirmenjian, V. Heine, M. C. Payne, V. Milman, R. M. Lynden-Gell, M. W. Finnis, Ab initio atomistic simulation of the strength of defective aluminum and tests of empirical force models, Physical Review B52 (1995) 15191- 15195.
  • [15] W. Li, T. Wang, Ab initio investigation of the elasticity and stability of aluminium, Journal of Physics Condensed Matter 10 (1998) 9889-9904.
  • [16] S. Ogata, J. Li, S. Yip, Ideal Pure Shear Strength of Aluminum and Copper, Science 298 (2002) 807-811.
  • [17] M. Kohyama, Tensile strength and fracture of a tilt grain boundary in cubic SiC: a first-principles study, Philosophical Magazine Letters 79 (1999) 659-668.
  • [18] M. Kohyama, Ab initio study of the tensile Polar strength and fracture of coincidence tilt boundaries in cubic SiC: interfaces of the {122} Σ=9 boundary, Physical Review B 65 (2002) 184107-184111.
  • [19] G. H. Lu, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, Theoretical tensile strength of an Al grain boundary, Physical Review B 69 (2004) 134106-134110.
  • [20] J. Chen, Y.-N. Xu, P. Rulis, L. Ouyang, W. Y. Ching, Molecular dynamics simulation of Y-doped Σ37 grain boundary in alumina, Acta Materialia 53 (2005) 403.
  • [21] M. Yamaguchi, M. Shiga, H. Kaburaki, Grain boundary decohesion by impurity segregation in a nickel-sulfur system, Science 307 (2005) 393-399.
  • [22] M. Yamaguchi, M. Shiga, H. Kaburaki, Response to comment on “grain boundary decohesion by impurity segregation in a nickel-sulfur system”, Science 309 (2005) 1677d.
  • [23] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Physical Review B49 (1994) 14251-14269.
  • [24] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B 54 (1996) 11169-11186.
  • [25] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6 (1996) 15-19.
  • [26] P. E. Blöchl, Projector augmented-wave method, Physical Review B 50 (1994) 17953-17797.
  • [27] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 59 (1999) 1758-1775.
  • [28] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77 (1996) 3865-3868.
  • [29] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77 (1996) 3865], Physical Review Letters 78 (1997) 1396-1399.
  • [30] F. Birch, Finite Elastic Strain of Cubic Crystals, Physical Review 71 (1947) 809-824.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0003-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.