PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of friction stir butt-welded Al-5086 H32 plate

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to study Al-5086 H32 plates with a thickness of 3 mm friction stir butt-welded using different welding speeds at a tool rotational speed of 1600 rpm. Design/methodology/approach: The effect of welding speed on the weld performance of the joints was investigated by conducting optical microscopy, microhardness measurements and mechanical tests (i.e. tensile and bend tests). The effect of heat input during friction stir welding on the microstructure, and thus mechanical properties, of cold-rolled Al-5086 plates was also determined. Findings: The experimental results indicated that the maximum tensile strength of the joints, which is about 75% that of the base plate, was obtained with a traverse speed of 200 mm/min at the tool rotational speed used, e.g. 1600 rpm, and the maximum bending angle of the joints can reach 180°. The maximum ductility performance of the joints was, on the other hand, relatively low, e.g. about 20%. These results are not unexpected due to the loss of the cold-work strengthening in the weld region as a result of the heat input during welding, and thus the confined plasticity within the stirred zone owing to strength undermatching. Higher joint performances can also be achieved by increasing the penetration depth of the stirring probe in butt-friction stir welding of Al-5086 H32 plates. Research limitations/implications: The results suggest that both strength and ductility performances can be increased by optimizing the tool penetration depth. Originality/value: Examination of mechanical properties of friction stir butt-welded Al-5086 H32 plate.
Rocznik
Strony
151--156
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
autor
autor
  • Mustafa Kemal University, Faculty of Engineering and Architecture, 31040 Antakya, Turkey, gurelcam@gmail.com
Bibliografia
  • [1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P.Temple-Smith, C. J. Dawes, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8 and US Patent Application No. 5,460,317, December 1991.
  • [2] G. Çam, M. Koçak, Joining of advanced materials, Area 6: Materials science and engineering, Topic 6.36.4: Materials processing and manufacturing technologies, in: Encyclopedia of Life Support Systems (EOLSS), Eolss Publishers, Oxford, on line: http://www.eolss.net/.
  • [3] G. Çam, Recent developments in friction stir welding, Makina Tek. 120 (2007) 48-58 (in Turkish).
  • [4] A. Von Strombeck, G. Çam, J. F. Dos Santos, V. Ventzke, M. Koçak, A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in al-alloys (keynote lecture), Proceedings of the TMS 2001 Annual Meeting “Aluminum Automotive and Joining Symposia” Aluminum 2001, New Orleans, 2001, 249-264.
  • [5] C. J. Dawes, W. M. Thomas, Friction stir process welds aluminum alloys. The process produces low-distortion, high-quality, low-cost welds on aluminum, Welding Journal 75 (1996) 41-45.
  • [6] C. G. Rhodes, M. W. Mahoney, W. H. Bingel, Effects of friction stir welding on microstructure of 7075 aluminium, Scripta Materialia 36 (1997) 69-75.
  • [7] M. W. Mahoney, C. G. Rhodes, Properties of friction-welded 7075 T651 aluminum, Metallurgical and Materials Transactions 29A (1998) 1955-1964.
  • [8] L. E. Murr, G. Liu, J. C. McClure, A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium, Journal of Materials Science 33 (1998) 1243-1251.
  • [9] O. V. Flores, C. Kennedy, L. E. Murr, D. Brown, S. Pappu, B. M. Nowak, J. C. McClure, Microstructural issues in a friction-stir-welded aluminum alloy, Scripta Materialia 38 (1998) 703-708.
  • [10] S. W. Kallee, J. Davenport, E.D. Nicholas, Railway manufacturers implement friction stir, Welding Journal 81/10 (2001) 47-50.
  • [11] D. Zhang, M. Suzuki, K. Murayama, Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding, Scripta Materialia 52 (2005) 899-903.
  • [12] H. S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, M. Ushio, Microstructures and mechanical properties of friction stir welds of 60% Cu-40% Zn copper alloy, Materials Science Engineering A 371 (2004) 160-169.
  • [13] A. J. Ramirez, M. C. Juhas, Microstructural evolution in Ti- 6Al-4V friction welds, Materials Science Forum 426 (2003) 2999-3004.
  • [14] R. Ueji, H. Fujii, L. Cui, A. Nishioka, K. Kunishige, K. Nogi, Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process, Materials Science Engineering A 423 (2006) 324-330.
  • [15] Y. S. Sato, H. Yamanoi, H. Kokowa, T. Furuhara, Microstructural evolution of ultrahigh carbon steel during friction stir welding, Scripta Materialia 57 (2007) 557-560.
  • [16] G. Çam, H.T. Serindag, A. Çakan, S. Mistikoglu, H. Yavuz, Mat.-wiss. u. Werkstofftech. 39/6 (2008) 394-399.
  • [17] W. M. Thomas, P. L. Threadgill, E. D. Nicholas, Feasibility of friction stir welding steel, Science and Technology of Welding and Joining 4 (1999) 365-372.
  • [18] T. J. Lienert, W. L. Stellwag, B. B. Grimmett, R. W. Warke, Friction stir welding studies on mild steel, Welding Journal 82 (2003) 1-9.
  • [19] A. P. Reynolds, W. Tang, M. Posada, J. DeLoach, Friction stir welding of DH36 steel, Science and Technology of Welding and Joining 8 (2003) 455-460.
  • [20] H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, K. Nogi, Friction stir welding of ultrafine grained interstitial free steels, Materials Transactions 47 (2006) 239-242.
  • [21] H. Fujii, L. Cui, M. Maeda, K. Nogi, Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys, Materials Science Engineering A 419 (2006) 25-31.
  • [22] H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, K. Nogi, Friction stir welding of carbon steels, Materials Science Engineering A 429 (2006) 50-57.
  • [23] L. Cui, H. Fujii, N. Tsuji, K. Nogi, Friction stir welding of a high carbon steel, Scripta Materialia 56 (2007) 637-640.
  • [24] A. P. Reynolds, Mechanical and corrosion performance of TGA and friction stir welded aluminum for tailor welded blanks: alloys 5454 and 6061, Proceedings of the 5th International Conference “Trends in Welding Research”, Pine Mountain, 1998, 563-567.
  • [25] G. Çam, M. Koçak, Microstructural and mechanical characterization of electron beam welded Al-alloy 7020, Journal of Materials Science 42/17 (2007) 7154-7161.
  • [26] G. Çam, V. Ventzke, J. F. dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, M. Penasa, C. Rivezla, Characterization of laser and electron beam welded Al alloys, Practical Metallography 37/2 (2000) 59-89.
  • [27] G. Çam, V. Ventzke, J. F. dos Santos, M. Koçak, G. Jennequin, P. Gonthier-Maurin, Characterisation of electron beam welded aluminium alloys, Science and Technology of Welding and Joining 4/5 (1999) 317-323.
  • [28] M. Koçak, M. Pakdil, G. Çam, Fracture behaviour of diffusion bonded titanium alloys with strength mismatch, Science and Technology of Welding and Joining 7/4 (2002) 187-196.
  • [29] G. Çam, M. Koçak, Progress in joining of advanced materials, International Materials Reviews 43/1 (1998) 1-44.
  • [30] G. Çam, M. Koçak, D. Dobi, L. Heikinheimo, M. Siren, Prediction of steady-state dilution in multi-pass hardfacing overlays deposited by self-shielded flux cored arc welding, Science and Technology of Welding and Joining 2/3 (1997) 95-101.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0003-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.