PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical plasma spectroscopy as a tool for monitoring laser welding processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this work we present experimental results of the joint application of the two previously mentioned spectroscopic techniques (electron temperature and correlation analysis) to a real-time laser welding monitoring case study. The two signals have been calculated starting from selected chemical species composing the plasma spectra. Experimental evidence is given of the correlation between the recorded signals and the occurrence of weld defects intentionally generated by varying the laser power and the travel speed. Design/methodology/approach: An optical sensor prototype was used, that embeds a fiber-coupled miniature spectrometer having a dynamic spectral range from 390 nm to 580 nm and a resolution of 0.3 nm. Such a prototype employed data acquisition and real-time spectra analysis algorithms for both the previously mentioned spectroscopic techniques, e.g. the electron temperature and the correlation coefficients. A high power CO2 laser source was used with maximum output power of 6 kW. The laser-metal interaction zone was shielded by an argon flow. The plasma optical emission was collected by a quartz collimator and transmitted to the optical sensor by a 50 μm core-diameter optical fiber. Spectral lines from three different chemical species (Mn(I), Fe(I), Cr(I)) composing the plasma plume and the stainless steel alloy were used for the acquisition of the electron temperature and the correlation signals [1]. Findings: Compared to other optical sensors, the main advantage of this system is that it has a great flexibility upon variation of the welding metal or the joint geometries. In fact once the chemical composition of the alloy was known and most plasma emission lines are identified, only a slight calibration of the software settings is necessary. Practical implications: A patented commercial version of this sensor (TRWOC from T.E.R.N.I. Research) is already available on the market. The capability of identifying the cause of the defect, once it has been detected is still limited to specific cases. Future work will regard the "intelligent" fusion of various sensor technologies aiming to increase the reliability of the system and, hopefully, realize a flexible and robust closed-loop control of the laser welding process. Originality/value: Being known the emission line parameters, this method is particularly advantageous because it does not require too many calculations and can be easily implemented in suitable software for real-time temperature measurement. Keywords: Laser welding; Plasma diagnostics; Optical sensor
Słowa kluczowe
Rocznik
Strony
402--407
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
autor
  • CNR-INFM Regional Laboratory "LIT3", Physics Department of University of Bari, I-70126 Bari, via Amendola 173, Italy, ancona@fisica.uniba.it
Bibliografia
  • [1] A. Ancona, V. Spagnolo, P. M. Lugarà, M. Ferrara, Optical sensor for real-time monitoring of CO2 laser welding process, Applied Optics 40 (2001) 6019-6025.
  • [2] D. F. Farson, K. R. Kim, Generation of optical and acoustic emissions in laser weld plumes, Journal of Applied Physics 85/3 (1999) 1329-1336.
  • [3] M. Ferrara, A. Ancona, P. M. Lugarà, M. Sibilano, On-line quality monitoring of welding processes by means of plasma optical spectroscopy, Proceedings of the SPIE 3888 (2000) 750-758.
  • [4] W. Gatzweiler, D. Maischner, E. Beyer, On-line diagnostics for process control in welding with CO2 lasers, Proceedingsof the SPIE 1020 (1998) 142-148.
  • [5] H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York, 1964.
  • [6] J. T. Knudtson, W. B. Green, D. G. Sutton, The UV-visible spectroscopy of laser-produced aluminium plasmas, Journal of Applied Physics 61/10 (1997) 4771-4779.
  • [7] D. Lacroix, G. Jeandel, Spectroscopic characterization of laser-induced plasma created during welding with a pulsed Nd:YAG laser, Journal of Applied Physics 81/10 (1997) 6599-6606.
  • [8] R. Miller, T. DebRoy, Energy absorption by metal-vapor dominated plasma during carbon dioxide laser welding of steels, Journal of Applied Physics 68 (1990) 2045-2050.
  • [9] Y. W. Park, H. Park, S. Rhee, K. Munjin, Real time estimation of CO2 laser weld quality for automotive industry, Optics and Laser Technology 34/2 (2002) 135-142.
  • [10] A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, A. M. De Frutos, J. M. Orza, Experimental study of laser-induced plasma in welding conditions with continuous CO2 laser, Journal of Applied Physics 74/9 (1993) 5773-5780.
  • [11] T. J. Rockstroh, J. Mazumder, Spectroscopic studies of plasma during cw laser material interaction, Journal of Applied Physics 61/3 (1987) 917-923.
  • [12] T. Sibillano, A. Ancona, V. Berardi, P. M. Lugarà, Correlation analysis in laser welding plasma, Optics Communications 251 (2005) 139-148
  • [13] T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, P. Parente, P. M. Lugarà, Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys, Optics and Lasers in Engineering 44 (2006) 1324-1335.
  • [14] T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, G. Basile, P. M. Lugarà, A study of the shielding gas influence on the laser beam welding of AA5083 aluminum alloys by in-process spectroscopic investigation, Optics and Lasers in Engineering 44 (2006) 1039-1051.
  • [15] T. Sibillano, A. Ancona, V. Berardi, P. M. Lugarà, Realtime monitoring of laser welding by correlation analysis: the case of AA5083, Optics and Lasers in Engineering 45 (2007) 1005-1009.
  • [16] A. Sun, E. Kannatey-Asibu, M. Gartner, Monitoring of laser weld penetration using sensor fusion, Journal of Laser Applications 14/2 (2002) 114-121.
  • [17] Z. Szymanski, J. Kurzyna, Spectroscopic measurements of laser induced plasma during CO2 laser, Journal of Applied Physics 76/12 (1994) 7750-7756.
  • [18] Z. Szymanski, J. Kurzyna, W. Kalita, The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium, Journal of Physics D: Applied Physics 30 (1997) 3153-3162.
  • [19] Z. Szymanski, J. Hoffmann, J. Kurzyna, Plasma plume oscillations during welding of thin metal sheets with CW CO2 laser, Journal of Physics D: Applied Physics 34 (2001) 189-199.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.