PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient thermography in the assessment of local fibre content in CFRP laminates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main objective of the present work was to find relationships between achieved results of the thermal non-destructive testing and the local fibre content in carbon/epoxy composite materials. Design/methodology/approach: The experiments have been performed using thermography testing station designed and built specially for the purpose of the investigation. Each carbon/epoxy composite was prepared with different fiber content with the same total thickness of the specimens. Thermal non-destructive testing (TNDT) technique was employed to measure such parameters as threshold temperature rise, upper limit temperature and temperature growth rate on the specimen surface. The results achieved were then analysed and correlated with carbon fiber content. Findings: The study has assessed the ability of transient thermography to carry out a testing of fiber content in carbon/epoxy composite materials. The experimental results revealed relationship between fiber content and temperature growth rate from which the empirical formula for predicting local fiber content has been developed. Research limitations/implications: In order to obtain reliable results, there are many factors to be considered such as void content in composite matrix, type and quality of composite surface and others. Further work is needed in this area. Practical implications: The results obtained would be of considerable importance in the industrial applications to achieve a first estimate of local fiber content in polymer composite materials. Originality/value: A new approach to the problem of fibre content examination has been demonstrated by means of thermal non-destructive testing. The method developed should be of interest to the industrial quality control applications and has a great importance for the products with a high failure-free requirements.
Rocznik
Strony
385--390
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
autor
autor
  • Division of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, sebastian.pawlak@polsl.pl
Bibliografia
  • [1] L. A. Dobrzański, Engineering materials and material design. Principles of materials science and physical metallurgy, WNT, Warsaw, 2006 (in Polish).
  • [2] W. Hufenbach, L. A. Dobrzański, M. Gude, J. Konieczny, A. Czulak, Optimization of the rivet joints of the CFRP composite material and aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 119-122.
  • [3] J. H. Chen, E. Schulz, J. Bohse, G. Hinrichsen, Effect of fibre content on the interlaminar fracture toughness of unidirectional glass-fibre/polyamide composite, Composites A 30 (1999) 747-755.
  • [4] O. I. Okoli, G. F. Smith, Failure modes of fibre reinforced composites: The effect o strain rate and fibre content, Journal of Materials Science 33 (1998) 5415-5422.
  • [5] S. B. Heru, J. Komotori, M. Shimizu, Y. Miyano, Effects of the fiber content on the longitudinal tensile fracture behavior of uni-directional carbon/epoxy composites, Journal of Materials Processing Technology 67 (1997) 89-93.
  • [6] G. Wróbel, S. Pawlak, Ultrasonic evaluation of the fiber content in glass/epoxy composites, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 187-190.
  • [7] G. Wróbel, S. Pawlak, The effect of fiber content on the ultrasonic wave velocity in glass/polyester composites, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 295-298.
  • [8] G. Wróbel, S. Pawlak, A comparison study of the pulseecho and through-transmission ultrasonics in glass/epoxy composites, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 51-54.
  • [9] D. Bates, G. Smith, D. Lu, J. Hewitt, Rapid thermal nondestructive testing of aircraft components, Composites B 31 (2000) 175-185.
  • [10] M. Krishnapillai, R. Jones, I. H. Marshall, M. Bannister, N. Rajic, Thermography as a tool for damage assessment, Composite Structures 67 (2005) 149-155.
  • [11] C. Santulli, IR thermography study of the effect of moulding parameters on impact resistance in E-glass/PP commingled laminates, NDT andE International 35 (2002) 377-383.
  • [12] N. P. Avdelidis, B. C. Hawtin, D. P. Almond, Transient thermography in the assessment of defects of aircraft composites, NDT & International 36 (2003) 433-439.
  • [13] C. Meola, G. M. Carlomagno, A. Squillance, A. Vitiello, Non-destructive evaluation of aerospace materials with lockin thermography, Engineering Failure Analysis 13 (2006) 380-388.
  • [14] G. Muzia, Z. M. Rdzawski, M. Rojek, J. Stabik, G. Wróbel, Thermographic diagnosis of fatigue degradation of epoxyglass composites, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 123-126.
  • [15] G. Wróbel, G. Muzia, S. Pawlak, Active IR-thermography as a method of fiber content evaluation in carbon/epoxy composites, Archives of Materials Science and Engineering30/2 (2008) 101-104.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.