PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cavitation erosion of laser processed Fe-Cr-Mn and Fe-Cr-Co alloys

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose of this paper is attempt explanation how laser beam processing influence on the cavitation performance of the Fe-Cr-Mn and Fe-Cr-Co alloys. This kind of alloys are frequently used in Polish power plants to routine repairs of damaged blades working under cavitation loading. Design/methodology/approach: Padding welds of investigated alloys were tested for three cases: after laser melting, after laser heating of the solid state and without additional processing. Cw. CO2 laser was employed as a source of radiation. The rotating disk rig was used in cavitation erosion investigations. The chemical composition, microstructure, and phase identification of the processed and subjected to cavitation loading alloys were examined using light microscopy, X-ray diffractometry and scanning electron microscopy, respectively. Findings: Phase transformation for processed and unprocessed alloys was observed. Obtained results revealed that laser processing contributes to delaying of austenite martensite phase transformation. Kinetic of this transformation is different for investigated alloys and depends on the chemical composition and applied laser processing. Research limitations/implications: Reported research ought to be completed and full cavitation curves (volume loss in time) for laser beam processed alloys must be done. Practical implications: For low intensity of cavitation loading, like in field conditions laser beam processing can increase of cavitation erosion resistance of investigated alloys due to increase of hardness. Originality/value: Confirmation that creation of the transformed and hardfacing structures by laser techniques leads in many cases to considerable changes in cavitation erosion properties of the processed materials.
Rocznik
Strony
378--384
Opis fizyczny
Bibliogr. 35 poz., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland, mszkodo@pg.gda.pl
Bibliografia
  • [1] M. K. Apalak, K. Aldas, F. Sen, Thermal non-linear stresses in an adhesively bonded and laser-spot welded single-lap joint during laser-metal interaction, Journal of Materials Processing Technology 142 (2003) 1-19.
  • [2] P. Bourdon, R. Simoneau, J. M. Dorey, Proceedings of the 17th IAHR Symposium ”Hydraulic Machinery and Cavitation”, Beijing, China, 1994.
  • [3] D. J. Chen, S. C. Wu, M. Q. Li, Studies on laser forming of Ti-6Al-4V alloy sheet, Journal of Materials Processing Technology 152 (2004) 62-65.
  • [4] K. Y. Chiu, F. T. Cheng, H. C. Man, Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion, Materials Science and Engineering 402 (2005) 126-134.
  • [5] S. P. Gadag, M. N. Srinivasan, Cavitation erosion of lasermelted ductile iron, Journal of Materials Processing Technology 51 (1995) 150-163.
  • [6] B. G. Gireń, M. Szkodo, J. Steller, The influence of residual stresses on cavitation resistance of metals-analysis based on investigations involving metals remelted by a laser beam and optical discharge plasma, Wear 233-235 (1999) 86-92.
  • [7] B. G. Gireń, M. Szkodo, J. Steller, Cavitation erosion of some laser-produced iron-base corrosion-resistant alloys, Wear 258/1-4 (2005) 614-622.
  • [8] J. Grum, R. Sturml, A new experimental technique for measuring strain and residual stresses during a laser remelting process, Journal of Materials Processing Technology 147 (2004) 351-358.
  • [9] E. Kennedy, G. Byrne, D. N. Collins, A review of the use of high power diode lasers in surface hardening, Journal of Materials Processing Technology 155-156 (2004) 1855-1860.
  • [10] O. U. Khan, B. S. Yilbas, Laser heating of sheet metal and thermal stress development, Journal of Materials Processing Technology 155-156 (2004) 2045-2050.
  • [11] C. T. Kwok, F. T. Cheng, H. C. Man, Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance, Surface and Coatings Technology 107 (1998) 31-40.
  • [12] C. T. Kwok, F. T. Cheng, H. C. Man, Laser surface modification of UNS S31603 stainless steel. Part II: cavitation erosion characteristics, Materials Science Engineering A290 (2000) 74-88.
  • [13] A. A. Lebedev, V. V. Kosarchuk, Influence of phase transformations on the mechanical properties of austenitic stainless steels, Plasticity 16 (2000) 749-767.
  • [14] F. Muller, J. Monaghan, Non-conventional machining of particle reinforced metal matrix composites, Journal of Materials Processing Technology 118 (2001) 278-285.
  • [15] D. R. Rao, B. Ventakaraman, M. K. Asundi, G. Sundararajan, The effect of laser surface melting on the erosion behaviour of a low alloy steel, Surface Coatings Technology 58 (1993) 85.
  • [16] R. Simoneau, Cavitation pit counting and steady state erosion rate, Proceedings of the International Symposium ”Cavitation” CAV'95, Deauville, France, 1995.
  • [17] R. Simoneau, P. Bourdon, M. Farhat, F. Avellan, J. M. Dorey, Bubble Noise and Cavitation Erosion in Fluid Systems, New Orleans, USA, 1993.
  • [18] J. Steller, International Cavitation Erosion Test. Preliminary Report. Part I: Co-ordinator's Report. IMP PAN Rep. 19 (1998).
  • [19] J. Steller, International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation, Wear 233-235 (1999) 51-64.
  • [20] K. Steller, T. Krzysztofowicz, Z. Reymann, American Society for Testing and Materials, Special Technique Publisher 567 (1975) 152.
  • [21] M. Szkodo, Relationship between microstrusture of laser alloyed C45 steel and its cavitation resistance, Journal of Materials Processing Technology 162-163 (2005) 410-415.
  • [22] M. Szkodo, Cavitation erosion behaviour of laser processd Fe-Cr-Mn and Fe-Cr-Co alloys, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 239-242.
  • [23] M. Szkodo, Cavitation erosion behaviour of 18/8 stainless steel after its laser alloying of manganese, Solid State Phenomena 113 (2006) 513-516.
  • [24] M. Szkodo, B. G. Gireń, Cavitation resistance of 0H18N9T steel alloyed with various amount of TiC or Mn means of laser beam, Proceedings of the SPIE 14th International Symposium ”Gas Flow, Chemical Lasers, and High-Power Lasers”, Wroclaw, 2003, vol. 5120, 664-673.
  • [25] M. Szkodo, B. G. Gireń, Cavitation erosion of steels processed by CO2 laser beam of various parameters, Journal of Materials Processing Technology 157-158 (2004) 446-450.
  • [26] M. Szkodo, B. G. Gireń, J. Steller, Cavitation resistance of new chromium-manganese and chromium-cobalt electrodes and their metallographic structures, Wear 233-235 (1999) 111-119.
  • [27] C. H. Tang, F. T. Cheng, H. C. Man, Laser surface alloying of a marine propeller bronze using aluminium powder: Part I: Microstructural analysis and cavitation erosion study, Surface and Coatings Technology 200/8 (2006) 2602-2609.
  • [28] C. H. Tang, F. T. Cheng, H. C. Man, Laser surface alloying of a marine propeller bronze using aluminium powder: Part II: Corrosion and erosion-corrosion synergism, Surface and Coatings Technology 200/8 (2006) 2594-2601.
  • [29] V. Tsakiris, D. V. Edmonds, Martensite and deformation twinning in austenitic steels, Materials Science Engineering 273-275 (1999) 430-436.
  • [30] X. F. Wang, J. Takacs, G. Krallics, A. Szilagyi, T. Markovits, Research on the thermo-physical process of laser bending, Journal of Materials Processing Technology 127 (2002) 388-391.
  • [31] Z. Wang, J. Zhu, Effect of phase transformation on cavitation erosion resistance of some ferrous alloys, Materials Science Engineering 358 (2003) 273-278.
  • [32] S. K. Wu, H. C. Lin, C. H. Yeh, A comparison of the ncavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy, Wear 244 (2000) 85-93
  • [33] Z. Xiaojun, L. A. J. Procopiak, N. C. Souza, A. S. C. M. D'Oliveira, Phase transformation during cavitation erosion of Co stainless steel, Materials Science Engineering 358 (2003) 199-204.
  • [34] Z. Yangzeng, J. Tianfu, Y. Mei, F. Wantang, Structural changes after cavitation erosion for a Cr-Mn-N stainless steel, Wear 205 (1997) 28-31.
  • [35] ASTM Standard G32-85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.