PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cell attachment on ion implanted titanium surface

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Of outmost importance for the successful use of an implant is a good adhesion of the surrounding tissue to the biomaterial. In addition to the surface composition of the implant, the surface topography also influences the properties of the adherent cells. In the present investigation, ion implanted and untreated surfaces were compared for cell adhesion and spreading. Design/methodology/approach: The surface topography of the surfaces were analyzed using AFM and the cell studies with SEM. Findings: The results of our present investigation is indicative of the fact that ion implanted titanium surface offer better cell binding affinity compared to untreated/polished surface. Practical implications: Success of non-biodegradable implants will first and foremost depend on biocompatibility, followed by the capacity of the surface topography of the implants to evince desired cell matrix, surface cell matrix interactions. In the present study, the cell growth on ion implanted Ti material is analyzed and discussed. Originality/value: In this paper, we have utilized ion implantation technique, which will produce nano-texturing of the surface without producing any detrimental effects to both the dimensions and properties of the implants.
Rocznik
Strony
373--377
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
  • School of Engineering, Cochin University of Science and Technology (CUSAT), Cochin- 682 022, Kerala, India, pssreejith@cusat.ac.in
Bibliografia
  • [1] T. F. Cavallaro, P. D. Kemp, Collagen fabrics as biomaterials, Biotechnology and Bioengineering 43 (1994) 781-791.
  • [2] R. A. Brown, K. D. Smith, D. A. McGrouther, Strategies for cell engineering in tissue repair, Wound Repair and Regeneration 5 (1997) 212-221.
  • [3] R. A. F. Clark, The molecular and cellular biology of wound repair, Second Edition, New York, Plenum Press, 1996, 1-35.
  • [4] C. W. Patrick Jr., A. G. Mikos, L. V. Mcintire, Prospectus of tissue engineering, in: Frontiers in Tissue Engineering, New York, Pergamon, 1998, 3-5.
  • [5] D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21/24 (2000) 2529-2543.
  • [6] S. F. Yang, K. F. Leong, Z. H. Du, C. K. Chun, The design of scaffolds for use in tissue engineering: Part I-Traditional factors, Tissue Engineering 7/6 (2001) 679-690.
  • [7] J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Meuller, L. G. Griffith, Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue Engineering 7/5 (2001) 557-572.
  • [8] L. N. Ramoshebi, T. N. Matsaba, et al, Tissue engineering: TGF-β superfamily members and delivery systems in boneregeneration, Expert Reviews in Molecular Medicine, 09.2002, http://www.expertreviews.org/02004969h.htm.
  • [9] R. Lange, F. Luthen, U. Beck, J. Rychly, A. Baumann, B. Nebe, Cell-extracellular matrix interaction and physicochemical characteristics of titanium surfaces depend on the roughness of the material'l, Biomolecular Engineering 19/2-6 (2002) 255-261.
  • [10] Ch.-H. Ku, D. P. Pioletti, M. Browne, P. J. Gregson, Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour, Biomaterials 23/6 (2002) 1447-1454.
  • [11] K. G. Marra, P. G. Campbell, et al, Novel Three Dimensional Biodegradable Scaffolds for Bone Tissue Engineering. Biomedical materials-drug delivery, implants, and tissue engineering, Boston, Massachusetts, USA, Materials Research Society, 1998.
  • [12] M. A. Imam, A. C. Fraker, Titanium Alloys as Implant Materials. Medical Applications of Titanium and Its Alloys, The Material and Biological Issues, ASTM STP 1272. S. A. Brown and J. E. Lemons, American Society for Testing and Materials, 1996, 3-16.
  • [13] R. Thull, Tissue-implant interaction. Metals as Biomaterials, John Wiley and Sons, 1998, 291-315.
  • [14] D. W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21/24 (2000) 2529-2543.
  • [15] Y. C. G. J. Paquay Tissue reaction to dacron velour and titanium fibre mesh used for anchorage or percutaneous devises, Biomaterials 17 (1996) 1251-1256.
  • [16] Y. C. G. J. Paquay, J. E. de Ruijter, J. P. C. M. Van der Waerden, J. A. Jansen, Wound-healing phenomena in titanium fibre mesh: the influence of the length of implantation, Biomaterials 18 (1997) 161-166.
  • [17] W. M. J. Vehof, H. M. P. Spauwen, A. J. Jansen, Bone formation calcium phosphate-coated titanium mesh, Biomaterials 21 (2000) 2003-2009.
  • [18] J. Van den Dolder, E. Farber, H. M. P. Spauwen, J. A. Jansen, Bone tissue reconstruction using titanium fibre mesh combined with rat bone marrow stromal cells, Biomaterials 24 (2003) 419-423.
  • [19] J. E. Davies, P. Ottensmayer, X. Shen, M. Hashimoto, S. A. F. Pel, Early extracellular matrix synthesis by bone cells, In: The Bone Biomaterial interface, Toronto, Toronto University Press, 1991, 214-228.
  • [20] B. Lowenberb, R. Cherneckey, A. Shiga, J. E. Davies Mineralised matrixproduction by osteoblasts on solid titanium in vitro, Cells and Materials 1 (2001) 177-187.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.