PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Fatigue failure of micro-alloyed 23MnB4 steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In the following paper there have been the structure and fatigue properties of micro-alloyed 23MnB4 steel in initial state and after heat treatment evaluated. Design/methodology/approach: Fatigue test of micro-alloyed 23MnB4 steel was completed by metallographic and fracture analyses. For scope the methods of the light microscopy and SEM were used. Findings: Microstructure of examined alloy in initial state was characterized mostly by fine ferrite with pearlitic net and in state after heat treatment was formed by martensite or partly by bainite and after tempering was formed by tempered martensite. Objective of this work consisted in determination of fatigue characteristics of micro-alloyed 23MnB4 steel, including fracture analyze. Results of fatigue testing at various stress levels for the samples in initial state and after the heat treatment have confirmed that obtained values of cycles to rupture were at least 585 000 cycles. Change of fatigue properties in dependence on heat treatment of the used steel. Research limitations/implications: For define fracture area a samples must be provide with notch. The experiment was limited by occurrence a void in cast alloys. Practical implications: The results may be utilized for application of the investigated material in process of manufacturing. Originality/value: These results contribute to explanation of fracture mechanism of micro-alloyed 23MnB4 steel.
Rocznik
Strony
356--363
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
autor
autor
autor
  • Faculty of Mechanical Engineering, VSB - Technical University of Ostrava, 17 listopadu 15, 708 33 Ostrava - Poruba, Czech Republic, stanislav.rusz@vsb.cz
Bibliografia
  • [1] B. Smoljan, Inverse hardness distribution in quenched steel specimen of complex form, Proceedings of the 12th Scientific International Conference on ”Achievements in Mechanical and Materials Engineering”, AMME'2003, Gliwice-Zakopane, 2003, 817-820.
  • [2] S. Rusz, L. Cizek, P. Filipec, Evaluation of fatigue of microalloyed 23MnB4 steel, Journal of Achievements in Materialsand Manufacturing Engineering 18 (2006) 223-226.
  • [3] K. Feyer, Storage wire ropes, Peningen Malmsheim Expert report, Vienna, 1998.
  • [4] L. M. Kachanov, Introduction to continuum damage mechanics, Kluwer-Academics, London, 1990.
  • [5] Z. Katz, Additional insights into fatigue life prediction, Proceedings of the 12th Scientific International Conference on ”Achievements in Mechanical and Materials Engineering”, AMME'2003, Gliwice-Zakopane, 2003, 447-450.
  • [6] K. Klarecki, E. Tomasiak, E. Barbachowski, Investigation of a fatigue-testing machine, Proceedings of the 12th Scientific International Conference on ”Achievements in Mechanical and Materials Engineering”, AMME'2003, Gliwice-Zakopane, 2003, 463-468.
  • [7] J. Boruta, T. Kubina, The microstructure development of metal materials at different plastometric torsion tests, Acta Metallurgica 10/1 (2004) 192-197.
  • [8] J. Boruta, I. Schindler, Utilization potentialities of the torsion plastometer, Department of Mechanics and Metal Forming Silesian Technical University, Katowice, 1998.
  • [9] L. A. Dobrzański, M. Kowalski, J. Madejski, Methodology of the mechanical properties prediction for the matallurgical products from the engineering steels using the Artificial Intelligence Methods, Proceedings of the 13th Scientific International Conference on ”Achievements in Mechanical and Materials Engineering”, AMME'2005, Gliwice-Wisła, 2005.
  • [10] J. Lis, A. Lis, C. Kolan, Processing and properties of C-Mn steel with dual-phase microstructure, Proceedings of the 13 Scientific International Conference on ”Achievements in Mechanical and Materials Engineering”, AMME'2005, Gliwice-Wisla, 2005, 395-398.
  • [11] T. Oyane, K. Sato, S. Okimoto, J. Shima, Criteria for ductile fracture and their applications, Journal of Mechanical Working Technology 4/1 (1980) 65-81.
  • [12] F. Pisek, Material Science I/4, Iron and his alloys, Prague Academy, 1975, 1-343.
  • [13] B. Smoljan, N. Tomašić, D. Rubeša, S. Smokvina Hanza, Simulation of hardness distribution in quenched steel specimen, Proceedings of the 13th Scientific International Conference on ”Achievements in Mechanical and Materials Engineering”, AMME'2005, Gliwice-Wisła, 2005, 597-600.
  • [14] A. S. Wifi, On the finite element analysis of workability limits in metal forming processes', Proceedings of Advances in Materials Processing and Technologies, Kuala-Lumpur, 1998, 913-925.
  • [15] M. Zidek, Hot and cold metallurgical formability of steels, Aleko, Praha, 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.