PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Manufacturing and damage mechanisms in metal matrix composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Mechanical properties of metal matrix composites (MMCs) are essentially functions of the manufacturing processes. Surface state and roughness conditions as well as the type of matrix reinforcement and heat treatment influence the mechanical behaviour of the MMCs in service conditions. The factors such as the porosity of the matrix, volume fraction of the reinforcement and their distribution, agglomeration or sedimentation of particles and particle size, dross and porosities influence the behaviour of the MMC. The static and cyclic deformation behaviour of these two metal matrix composites has been investigated at room temperature; 2124/Al-Si-Cu fabricated by powder metallurgy and AS7G/Al-Si-Mg fabricated by foundry. Design/methodology/approach: In cyclic deformation, surface roughness effect on the damage behaviour has been discussed. The microstructure for optical images was made by Olympus optical microscope (OM). The failed specimens are observed by using of scanning electron microscope (SEM) and also the variation of volume fraction depending on the tomography density (TD) was evaluated by means of X-rays computed tomography, CT. Findings: AS7G composite showed considerable lower mechanical properties regarding to the 2124 composite. In the AS7G composite, the crack generally initiated at the interface (SiC/matrix) with many interface debonding between the SiC particles and the matrix. This was the principal cause of the reduced fatigue strength. Practical implications: Applications of χ -rays CT on the composite materials is more efficient and skilful. χ -rays CT well characterise the particle size and the distribution of the reinforcements-volume fraction as 3D at the mesoscopic scale as a possible way to study this aspect. Originality/value: Manufacturing of two new different MM-composites and damage analysis in successful usage of aerospace application.
Słowa kluczowe
Rocznik
Strony
294--300
Opis fizyczny
Bibliogr. 36 poz., wykr.
Twórcy
autor
autor
autor
autor
  • School of Mechanical and Manufacturing Engineering, EA 2336 Supmeca / LISMMA-Paris, France, bayraktar@supmeca.fr
Bibliografia
  • [1] P. D. Pitcher, J. A. Shakesheff, J. D. Lord, Aluminium based metal matrix composites for improved elevated temperature performance, Materials Science and Technology 14 (1998) 1015-1023.
  • [2] T. W. Clyne, P. J. Withers, An introduction to metal matrix composites, Cambridge University Press, Cambridge, 1993.
  • [3] J. Lorca, Fatigue of particle-and whisker-reinforced metalmatrix composites, Progress in Materials Science 47 (2002) 283-353.
  • [4] T. W. Clyne, Metallic composite materials, in Physical metallurgy, Fourth Edition, Elsevier, 1996, 2568-2625.
  • [5] J. R. Davis, Metals handbook, Desk edition, ASM International, Materials Park, Ohio, 1998.
  • [6] M. Rittner, Metal matrix composites in the 21st century: markets and opportunities, CT: BCC Inc., Norwalk, 2000.
  • [7] D. B. Miracle, S. L. Donaldson, Introduction to composites, in ASM handbook: Composites, vol. 21, ASM International, Materials Park, Ohio, 2001, 3-17.
  • [8] A. Evans, C. S. Marchi, A. Mortensen, Metal matrix composites in industry: an introduction and a survey, Kluwer Academic Publishers, Dordrecht, 2003.
  • [9] D. L. Davidson, Fatigue and fracture toughness of aluminium alloys reinforced with SiC and alumina particles, Composites 24/3 (1993) 248-255.
  • [10] J. E. Spowart, D. B. Miracle, The influence of reinforcement morphology on the tensile response of 6061/SiC/25p discontinuously-reinforced aluminium, Materials Science and Engineering A 357 (2003) 111-123.
  • [11] D. L. Davidson, The effect of particulate SiC on fatigue crack growth in cast-extruded aluminium alloys composite, Metallurgical Transaction A 22/1 (1991) 97-112.
  • [12] I. Ozdemir, K. Onel, Thermal cycling behaviour of an extruded aluminium alloy/SiCp composite, Composites B 35 (2004) 379-384.
  • [13] E. Bayraktar, S. Antolonovich, C. Bathias, Multiscale study of fatigue behaviour of composite materials by x-ray computed tomography, Proceedings of the 3rd International Conference „Fatigue of Composites” ICFC3, Kyoto, 2004, 1322-1333.
  • [14] J. J. Lewandowski, C. Liu, Effects of matrix microstructure and particle distribution on fracture of an aluminium metal matrix composite, Materials Science and Engineering A 107 (1989) 241-255.
  • [15] Z. Z. Chen, K. Tokaji, Effect of particle size on fatigue crack initiation and small crack growth in SiC particulatereinforced aluminium alloy composites, Materials Letters 58/17-18 (2004) 2314-2321.
  • [16] D. B. Miracle, Metal matrix composites-from science to technological significance, Composites Science and Technology 65 (2005) 2526-2540.
  • [17] S. M. Pickard, B. Derby, The deformation of particle reinforced metal matrix composites during temperature cycling, Acta Metallurgica et Materialia 38 (1990) 2537-2552.
  • [18] P. Cavaliere, Isothermal forging of AA2618 reinforced with 20% of alumina particles, Composites A 35 (2004) 619-629.
  • [19] D. B. Miracle, Metal matrix composites for space systems: current uses and future opportunities, in: Affordable metal matrix composites for high performance applications, TMS, Warrendale, 2001, 1-21.
  • [20] N. Chawla, C. Andres, J. W. Jones, J. E. Allison, Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite, Metallurgical and Materials Transactions A 29 (1998) 2843-2854.
  • [21] A. Bouza, PhD thesis, ITMA/CNAM-Paris, 1995.
  • [22] D. Braz, T. R. Lopes, M. G. L. Motta, Computed tomography, Applied Radiation and Isotopes 53 (2000) 725-729.
  • [23] C. Fouret, S. Degallaix, Experimental and numerical study of the low-cycle fatigue behaviour of a cast metal matrix composite Al-SiCp, International Journal of Fatigue 24 (2002) 223-232.
  • [24] O. Hartmann, M. Kemnitzer, H. Biermann, Influence of reinforcement morphology and matrix strength of metal-matrix composites on the cyclic deformation and fatigue behaviour, International Journal of Fatigue 24 (2002) 215-221.
  • [25] A. Kostka, J. Lelatko, M. Gigla, H. Morawiec, A. Janas, TEM Study of the interface in ceramic-reinforced aluminium-based composites, Materials Chemistry and Physics 81 (2003) 323-325.
  • [26] X. Liu, PhD thesis, ITMA/Ecole Centrale-Paris, 1993.
  • [27] P. Poza, J. Llorca, Mechanical behaviour and failure micro mechanisms of Al/Al2O3 composites under cyclic deformation, Metallurgical and Materials Transactions A 26 (1995) 3131-3141.
  • [28] J. Llorca, P. Poza, Influence of reinforcement fracture on the cyclic stress-strain curve of metal-matrix composites, Acta Metallurgica et Materialia 43/11 (1995) 3959-3969.
  • [29] S. C. Tjong, NN-particles-reinforced MMCs with enhanced mechanical properties, Advanced Engineering Materials 9/8 (2007) 639-652.
  • [30] V. Bystritskii, E. Garate, J. Earthman, A. Kharlov, E. Lavernia, X. Peng, Fatigue properties of 2024-T3 and 7075-T6 aluminium alloys modified using plasma-enhanced ion beams, Theoretical and Applied Fracture Mechanics 32 (1999) 47-53.
  • [31] T. S. Srivatsan, The low-cycle fatigue behaviour of an aluminium alloy-ceramic-particle composite, International Journal of Fatigue 14 (1992) 173-182.
  • [32] S. B. Biner, Growth of fatigue cracks emanating from notches in SiC particulate aluminium composites, Fatigue and Fracture of Engineering Materials and Structures 13/6 (1990) 637-646.
  • [33] Y. Brechet, J. D. Embury, S. Tao, L. Luo, Damage initiation in metal matrix composites, Acta Metallurgica et Materialia 39 (1991) 1781-1786.
  • [34] J. Llorca, J. L. Martínez, M. Elices, Reinforcement fracture and tensile ductility in sphere-reinforced metal-matrix composites, Fatigue and Fracture of Engineering Materials and Structures 20/5 (1997) 689-702.
  • [35] M. Jain, Micromechanical stresses during low cycle fatigue of an overaged Al-Mg-Si alloy, Fatigue Fracture of Engineering Materials and Structures 15/1 (1992) 33-42.
  • [36] X. C. Liu, C. Bathias, Fatigue behaviour of Al2O3 short fibre reinforced aluminium alloy, Fatigue and Fracture of Engineering Materials and Structures 15/11 (1992) 1113-1123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.