PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of Co-based amorphous ribbons

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this work was to investigate the influence of chemical composition and isothermal heating in order to determine the change of the mechanical properties of the metallic ribbons by depth sensing indentation technique. Design/methodology/approach: The amorphous metallic ribbons were manufactured by planar-flow-casting method. Instrumented hardness measuring was carried out using the nanohardness tester DUH-202 with a Vickers indenter. Observations of the structure of powders were made on the OPTON DSM-940 scanning electron microscope. The diffraction examinations and examinations of thin foils were made on the JEOL JEM 3010 transmission electron microscope. Findings: The analysis of the mechanical properties and structure of the Co-based amorphous ribbons obtained in the by planar-flow-casting process proved that the no significant differences between both ternary alloys in local mechanical properties HM, EIT and W were observed for amorphous state but differences between ternary and multicomponent alloys were observed. In heat treated state small differences between materials were observed too. Research limitations/implications: For the metallic Co-based amorphous ribbons, further mechanical examinations and structure are planed. Practical implications: Feature an alternative to commercial alloys and composite materials are the amorphous and nanocrystalline metal amorphous ribbons obtained by melt spinning technique and make it possible to obtain the new composite materials with best mechanical properties, whose dimensions and shape can be freely formed. Originality/value: The paper presents influence of annealing temperature and chemical composition of metallic ribbons on martens hardness, indentation modulus EIT, work for deformation and ratio of elastic and total indentation energy. Heating of ribbons obtained by melt spinning technique, to check its effect on changes of mechanical properties. Results and a discussion of the influence of annealing temperature microhardness metallic ribbons is presented.
Rocznik
Strony
254--261
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
autor
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] J. Alcala, A. E. Giannakopoulos, S. Suresh, Continuous measurements of load-penetration curves with spherical micro-indenters and the estimation of mechanical properties, Journal of Materials Research 13 (1998) 1390-1395.
  • [2] M. Besterci, L. Pešek, P. Zubko, P. Hvizdos, Mechanical properties of phases in Al-Al4C3 mechanically alloyed material measured by depth sensing indentation technique, Materials Letters 59 (2005) 1971-1975.
  • [3] I. A. Figueroa, I. Betancourt, G. Lara, J. A. Verduzco, Effect of B, Si and Cr on the mechanical properties of Fe-based amorphous metallic ribbons', Journal of Non-Crystalline Solids 351 (2005) 3075-3080.
  • [4] A. R. Franco, G. Pintaude, A. Sinatora, C. E. Pinedo, A. P. Tschiptschin, The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness, Materials Research 7/3 (2004) 4-9.
  • [5] M. Gögebakan, Mechanical properties of AlYNi amorphous alloys, Journal of Light Metals 2 (2002) 271.
  • [6] W. H. Jiang, F. X. Liu, Y. D.Wang, H. F. Zhang, H. Choo, P. K. Liaw, Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses, Materials Science and Engineering 430 (2006) 350-354.
  • [7] J. Konieczny, L. A. Dobrzański, L. Pešek, Mechanical properties of metallic ribbons based on cobalt by depth sensing indentation technique, Proceedings of 11 International Scientific Conference on Contemporary Achievements in Mechanics, Manufacturing and Materials Science, Gliwice-Zakopane, 2005, 492-496. CD-ROM.
  • [8] J. Konieczny, L. A. Dobrzański, A. Przybyl, J. J. Wysłocki Structure and magnetic properties of powder soft magnetic materials, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 139-142.
  • [9] P. Kwapuliński, J. Rasek, Z. Stokłosa, G. Haneczok, Magnetic properties of amorphous and nanocrystalline alloys based on iron, Proceedings of 9th Jubilee Scientific International Conference, Achievements in Mechanical and Materials Engineering, Gliwice-Sopot-Zakopne, 2000, 341-344.
  • [10] P. L. Larsson, A. E. Giannakopoulos, E. Soderlund, D. J. Rowcliffe, R. Vestergaard, Analysis of Berkovich Indentation, International Journal of Solids and Structures 33/2, (1996) 221.
  • [11] S. Lesz, R. Nowosielski, A. Zajdel, B. Kostrubiec, Z. Stokłosa, Structure and magnetic properties of the amorphous Co80Si9B11 alloy, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 155-158.
  • [12] Y. Lu, P. K. Liaw, The Mechanical Properties of Nanostructured Materials, Journal of The Minerals, Metals and Materials Society 3 (2001) 31-32.
  • [13] D. G. Morris, Strength and ductility of nanocrystalline materials: What do we really understand, Proceedings of 22nd Riso International Symposium on Materials Science, Roskilde, Denmark, 2001, 89-104.
  • [14] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (1992) 721-726.
  • [15] W. C. Oliver, G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research 19/1 (2004) 3-20.
  • [16] L. Pešek, L. A. Dobrzański, P. Zubko, J. Konieczny, Mechanical properties of metallic ribbons investigated by depth sensing indentation technique, Journal of Magnetism and Magnetic Materials 304 (2006) 645-e647.
  • [17] G. M. Pharr, W. C. Oliver, F. R. Brotzen, On the Generality of the Relationship between Contact Stiffness, Contact Area, and Elastic Modulus during Indentation, Journal of Materials Research 7 (1992) 613-617.
  • [18] T. Raszka, A. Przybył, Optimisation of soft magnetic properties in Fe83-XCoXNb3B13Cu1 (x=10, 30, 40) amorphous alloys, Proceedings of 13th Jubilee Scientific International Conference, Achievements in Mechanical and Materials Engineering, AMME'2005, Gliwice-Wisła, 2005, 535-538.
  • [19] C. A. Schuh, T. G. Nieh, A survey of instrumented indentation studies on metallic glasses, Journal of Materials Research 19/1 (2004) 46-49.
  • [20] D. Szewieczek, A. Baron, Electrochemical corrosion and its influence on magnetic properties of Fe75,5Si13,5B9Nb3Cu1 alloy, Proceedings of 13th Jubilee Scientific International Conference, Achievements in Mechanical and Materials Engineering, AMME'2005, Gliwice-Wisła, 2005, 631-634.
  • [21] D. Szewieczek, S. Lesz, Influence of structure on the evolution of magnetic and mechanical properties of amorphous and nanocrystalline Fe85.4Hf1.4B13.2 alloy, Journal of Materials Processing Technology 162-163 (2005) 254-259.
  • [22] D. Szewieczek, J. Tyrlik-Held, S. Lesz, Changes of mechanical properties and fracture morphology of amorphous tapes involved by heat treatment, Journal of Materials Processing Technology 109 (2001) 190-195.
  • [23] ISO-14577-Metallic materials-Instrumented indentation test for hardness and materials parameters.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.