PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Corrosion behaviour of AISI 316L steel in artificial body fluids

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the comparison of corrosion resistance of AISI 316L stainless steel in variouscorrosive media such as artificial urine, Tyrode's physiological solution and artificial plasma. Design/methodology/approach: The tests were carried out on samples of the following surfaces: grinded-average roughness Ra=0.31 μ m and electropolished and chemically passivated average roughness Ra=0.10 μ m. The corrosion tests were realized by recording of anodic polarization curves with the use of the potentiodynamic method. The VoltaLab ® PGP 201 system for electrochemical tests was applied. The tests were carried out in electrolyte simulating urine (pH=6-6.4), Tyrode's physiological solution (pH=6.8-7.4) and plasma (pH=7.2-7.6) at the temperature of 37± 1° C. Findings: Surface condition of AISI 316L stainless steel determines its corrosion resistance. The highestvalues of breakdown potentials were recorded for all electropolished and chemically passivated samples in allsimulated body fluids. The highest values of anodic current density were recorded for samples tested in artificialurine, the lowest values were recorded for samples tested in Tyrode's physiological solution. Research limitations/implications: The obtained results are the basis for the optimization of physicochemical properties of the AISI 316L stainless steel. Practical implications: On the basis of the obtained results it can be stated that stainless steel meets the basic biocompatibility criteria and can be applied in reconstruction surgery, operative cardiology and urology. Originality/value: The paper presents the influence of various corrosive media simulating human body fluids on corrosion resistance of AISI 316L stainless steel.
Słowa kluczowe
Rocznik
Strony
247--253
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
autor
autor
  • Division of Biomedical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, wojciech.kajzer@polsl.pl
Bibliografia
  • [1] W. Kajzer, J. Marciniak, Biomechanical FEM analysis of stent-urethra system, Proceedings of the 19th International Scientific Conference „European Conference on Biomaterials” ESB'2005, Sorrento, 2005, 618-619.
  • [2] W. Kajzer, J. Marciniak, Biomechanical analysis of urological stent, Engineering of Biomaterials 47-53 (2005) 141-143.
  • [3] W. Kajzer, W. Chrzanowski, J. Marciniak, Corrosion resistance of Cr-Ni-Mo steel intended for urological stents, Proceedings of the 11th International Scientific Conference „Contemporary Achievements in Mechanics, Manufacturing and Materials Science” CAM3S'2005, Gliwice-Zakopane, 2005, 444-449.
  • [4] W. Kajzer, M. Kaczmarek, A. Krauze, J. Marciniak, Surface modification and corrosion resistance of Ni-Ti alloy used for urological stents, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 123-126.
  • [5] W. Kajzer, M. Kaczmarek, J. Marciniak, Biomechanical analysis of stent-oesophagus system, Journal of Materials Processing Technology 162-163 (2005) 196-202.
  • [6] W. Kajzer, A. Krauze, W. Walke, J. Marciniak, Corrosion resistance of Cr-Ni-Mo steel in simulated body fluids, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 115-118.
  • [7] A. Krauze, W. Kajzer, J. Marciniak, Biomechanical characteristics of intramedullary nails-femur system with the use of FEM, Proceeding of the 12th International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice-Zakopane, 2003, 533-538.
  • [8] A. Krauze, A. Ziębowicz, J. Marciniak, Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children, Journal of Materials Processing Technology 162-163 (2005) 209-214.
  • [9] J. Marciniak, Perspectives of employing of the metallic biomaterials in the reconstruction surgery, Engineering of Biomaterials 1 (1997) 12-20.
  • [10] J. Marciniak, Biomaterials, Silesian University of Technology Press, Gliwice, 2002 (in Polish).
  • [11] J. Marciniak, A. Ziębowicz, A. Krauze, Biomechanical characteristics of intramedullary nails-bone system in simulated laboratory conditions, Proceedings of the 9 International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME'2000, Gliwice-Sopot-Gdansk, 2000, 367-370.
  • [12] M. Multanen, M. Talja, S. Hallanvuo, A. Siitonen, T. Valimaa, T. L. J. Tammela, J. Seppala, P. Tormala, Bacterial adherence to ofloxacin-blended polylactone-coated self-reinforced L-lactic acid polymer urological stents, BJU International 86 (2000) 966-969.
  • [13] Z. Paszenda, J. Tyrlik-Held, Corrosion resistance of coronary stents made of Cr-Ni-Mo steel, Proceedings of the 10 International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME'2001, Gliwice-Kraków-Zakopane, 2001, 453-460.
  • [14] Z. Paszenda, J. Tyrlik-Held, Forming the physicochemical properties of coronary stents surface, Proceedings of the 13 Conference „European Society of Biomechanics” ESB'2002, Wroclaw, 2002, 539-540.
  • [15] Z. Paszenda, J. Tyrlik-Held, Coronary stents with passive and carbon layers, Proceedings of the 17th International Scientific Conference „European Conference on Biomaterials” ESB'2002, Barcelona, 2002, 89-90.
  • [16] Z. Paszenda, J. Tyrlik-Held, J. Marciniak, A. Włodarczyk, Corrosion resistance of Cr-Ni-Mo steel intended for implants used in operative cardiology, Proceedings of the 9 International Scientific Conference „Achievements in Mechanical and Materials Engineering”, AMME'2000, Gliwice-Sopot-Gdańsk, 2000, 425-428.
  • [17] S. G. Steinemann, Corrosion of surgical implants-in vivo and in vitro tests, Evaluation of Biomaterials, John Wiley and Sons, New York,1980.
  • [18] J. Szewczenko, J., Marciniak, W. Chrzanowski, Corrosionof Cr-Ni-Mo steel implants in conditions of sinusoidal current electrostimulation, Proceedings of the 9 International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME'2000,Gliwice-Sopot-Gdańsk, 2000, 511-514.
  • [19] J. Szewczenko, J. Marciniak, W. Chrzanowski, Corrosion damages of Cr-Ni-Mo steel implants in conditions of an alternating current electrostimulation, Proceedings of the 10th International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME'2001, Gliwice-Kraków-Zakopane, 2001, 543-548.
  • [20] T. Valimaa, S. Laaksovirta, Degradation behaviour of selfreinforced 80L/20G PLGA devices in vitro, Biomaterials 25 (2004) 1225-1232.
  • [21] W. Walke, Z. Paszenda, J. Filipiak, Experimental and numerical biomechanical analysis of vascular stent, Journal of Materials Processing Technology 164-165 (2005) 1263-1268.
  • [22] W. Walke, W. Kajzer, M. Kaczmarek, J. Marciniak, Stress and displacement analysis in conditions of coronary angioplasty, Proceedings of the 11th International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME'2002, Gliwice-Zakopane, 2002, 595-600.
  • [23] W. Walke, Z. Paszenda, J. Marciniak, Optimization of coronary stent with the use of finite element method, Proceedings of the 12th International Scientific Conference „Achievements in Mechanical and Materials Engineering” AMME'2003, Gliwice-Zakopane, 2003, 1011-1016.
  • [24] W. Walke, Z. Paszenda, J. Marciniak, Corrosion resistance of Co-Cr-W-Ni alloy designer for implants used in operative cardiology, Engineering of Biomaterials 47-53 (2005) 96-99.
  • [25] Standard PN-EN ISO 10993-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.