PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evolution and phase composition of high-manganese austenitic steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to determine the influence of hot-working conditions on microstructure evolution and phase composition of new-developed high-manganese austenitic steels. Design/methodology/approach: Determination of processes controlling strain hardening was carried out in continuous compression test using Gleeble 3800 thermo-mechanical simulator. Evaluation of processes controlling work hardening and occurring after deformation at 900°C were identified by microstructure observations of the specimens solution heat-treated after plastic deformation to a true strain equal 0.23, 0.50 and 0.91. Phase composition of steels was confirmed by X-ray diffraction analysis. Findings: The steels have a fine-grained austenite microstructure with many annealing twins to a temperature of about 1000°C. The initiation of dynamic recrystallization occurs already after true deformation equal 0.29. Participation of fine grains arranged in a matrix of dynamically recovered grains essentially increases after increasing true strain to 0.5. Fully dynamically recrystallized microstructure of steel can be obtained after the true strain equal 0.9. The conditions of hot-working influence phase state of investigated steels. Steel no. 1 keeps stable austenite microstructure independently from conditions of plastic deformation. Steel with initial bi-phase microstructure keeps a certain portion of ε martensite, yet dependant on conditions of hot-working. Research limitations/implications: To determine in detail the hot-working behaviour of developed steels, a progress of microstructure evolution in subsequent stages of multi-stage compression test should be investigated. Practical implications: The obtained microstructure- hot-working conditions relationships and stress-strain curves can be useful in determination of power-force parameters of hot-rolling for sheets with fine-grained austenitic structures. Originality/value: The hot-working behaviour and microstructure evolution in various conditions of plastic deformation for new-developed high-manganese austenitic steels with Nb and Ti microadditions were investigated.
Rocznik
Strony
218--225
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, adam.grajcar@polsl.pl
Bibliografia
  • [1] A. D. Paepe, J. C. Herman, Improved deep drawability of Ifsteels by the ferrite rolling practice, Proceedings of the 37 Mechanical Working and Steel Processing Conference, Baltimore, 1999, 951-962.
  • [2] H. Takechi, Application of IF based sheet steels in Japan, Proceedings of the International Conference on the Processing, Microstructure and Properties of IF Steels, Pittsburgh, 2000, 1-12.
  • [3] J. Adamczyk, Development of the microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 9-20.
  • [4] J. Adamczyk, A. Grajcar, Heat treatment and mechanical properties of low-carbon steel with dual-phase microstructure, Journal of Achievements in Materials and Manufacturing Engineering 22 (2007) 13-20.
  • [5] A. Grajcar, Hot-working in the γ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28 (2007) 743-750.
  • [6] S. Ganesh Sundara Raman, K. A. Padmanabhan, Tensile deformation-induced martensitic transformation in AISI 304LN austenitic stainless steel, Journal of Materials Science Letters 13 (1994) 389-392.
  • [7] G. Frommeyer, O. Grässel, High strength TRIP/TWIP and superplastic steels: development, properties, application, La Revue de Metallurgie-CIT 10 (1998) 1299-1310.
  • [8] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43 (2003) 438-446.
  • [9] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Materials Science and Engineering A 387-389 (2004) 158-162.
  • [10] O. Grässel, L. Krüger, G. Frommeyer, L. W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development properties-application, International Journal of Plasticity 16 (2000) 1391-1409.
  • [11] S. Vercammen, B. Blanpain, B. C. De Cooman, P. Wollants, Mechanical behaviour of an austenitic Fe-30Mn-3Al-3Si and the importance of deformation twinning, Acta Materialia 52 (2004) 2005-2012.
  • [12] A. K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [13] T. Bator, Z. Muskalski, S. Wiewiórkowska, J. W. Pilarczyk, Influence of the heat treatment on the mechanical properties and structure of TWIP steel in wires, Archives of Materials Science and Engineering 28/6 (2007) 337-340.
  • [14] G. Niewielski, M. Hetmańczyk, D. Kuc, Influence of the initial structure and deformation conditions on properties of hot-deformed austenitic steels, Materials Engineering 24 (2003) 795-798 (in Polish).
  • [15] A. S. Hamada, L. P. Karjalainen, M. C. Somani, The influence of aluminium on hot deformation behaviour and tensile properties of high-Mn TWIP steels, Materials Science and Engineering A 467 (2007) 114-124.
  • [16] L. A. Dobrzański, A. Grajcar, W. Borek, Influence of hotworking conditions on a structure of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 29 (2008) 139-142.
  • [17] S. Król, Influence of the thermo-mechanical processing and ageing on the structure and mechanical properties of the 11G12 Hadfield steel, PhD thesis, Silesian University of Technology, Gliwice, 1974.
  • [18] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets, Journal of Materials Processing Technology 162-163 (2005) 267-274.
  • [19] A. Grajcar, Effect of hot-working in the γ+α range on a retained austenite fraction in TRIP-aided steel, Journal of Achievements in Materials and Manufacturing Engineering 22 (2007) 79-82.
  • [20] J. Adamczyk, Theoretical physical metallurgy, The Silesian University of Technology Publishers, Gliwice, 2002, (in Polish).
  • [21] K. K. Jee, J. H. Han, W. Y. Jang, Measurement of volume fraction of ε martensite in Fe-Mn based alloys, Materials Science and Engineering A 378 (2004) 319-322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.