PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electropolishing and chemical passivation of austenitic steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is investigations a dependence between the parameters of the electrochemical treatment of austenitic steel and their electrochemical behavior in Tyrod solution. Design/methodology/approach: Specimens (rode 30 mm × Ø1 mm) were to give in to the surface treatment-mechanically polishing, electrolytic polishing and passivation with various parameter. Electrochemical investigations concerning the corrosion resistance of austenitic steel samples were carried out by means of the potentiodynamic and electrochemical impedance spectroscopy method. Findings: The analysis of the obtained results leads to the conclusion that chemical passivation affects also the chemical composition of the passive layer of steel and changes its resistance to corrosion. Electrolytic polishing improves corrosion resistance, as can be proved by the shift of the value of the corrosion potential and breakdown potential of the passive layer and the initiation of pittings. Research limitations/implications: The obtained results are the basis for the optimization of anodic passivation parameters of the austenitic steel as a metallic biomaterial. The future research should be focused on selected more suitable parameters of the electrochemical impedance spectroscopy test to better describe process on the solid/ liquid interface. Practical implications: In result of the presented investigations it has been found that the best corrosion resistance can be achieved thanks to the application of electrolytic polishing of the steel in a special bath and chemical passivation in nitric (V) acid with an addition of chromic (VI) acid temperature t = 60°C for one hour. Originality/value: The enormous demand for metal implants has given rise to a search for cheap materials with a good biotolerance and resistance to corrosion. Most commonly used are steel implants assigned to remain in the organism for some limited time only. It was compare two electrochemical methods: potentiodynamic polarization and electrochemical impedance spectroscopy.
Rocznik
Strony
197--202
Opis fizyczny
Bibliogr. 30 poz., wykr.
Twórcy
autor
autor
autor
  • Division of Nanocrystalline and Functional Materials and Sustainable Pro-ecological Technologies, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, aleksandra.baron@polsl.pl
Bibliografia
  • [1] User Manual for General Purpose Electrochemical System (GPES), Eco Chemie B.V., 2001
  • [2] User Manual for Frequency Responsible Analyser (FRA), Eco Chemie B.V., 2001.
  • [3] Web-site: www.ecochemie.nlBaron
  • [4] A. Baron, Electrochemical corrosion of amorphous and nanocrystalline Fe78Si9B13 and Fe73,5Si13,5B9Nb9Cu1 alloys, Doctoral Desirtation, Gliwice, 2004 (in Polish).
  • [5] A. Baron, W. Simka, W. Chrzanowski, EIS tests of electrochemical behavior of Ti6Al4V and Ti6Al7Nb alloys, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 23-26.
  • [6] A. Baron, W. Simka, G. Nawrat, D. Szewieczek, A. Krzyzak, Influence of electrolytic polishing on electrochemical behavior of austenitic steel, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 55-58.
  • [7] A. Baron, D. Szewieczek, G. Nawrat, Electrocemical Impedance Spectroscopy in investigation of Fe78Si13B9 alloys corrosion, Proceedings of the 11th Scientific Conference „Materials Mechanical and Manufacturing Engineering” M3E'2005, Gliwice-Zakopane, 2005, 17-20.
  • [8] J. O. M. Bockirs, A. K. N. Reddly, Modern Electrochemistry, 2, Plenum Press, New York, 1998.
  • [9] J. O. M. Bockirs, D. M Drazic, Electro-Chemical Science, Taylor and Francis LTD, London, 1972.
  • [10] C. Gabrielli, Identification of Electrochemical Processes by Frequency Response, Report no.004/83, France, 1998.
  • [11] M. Kaczmarek, J. Marciniak, J. Szewczenko, A. Ziębowicz, Plate stabilizers in elastic osteosynthesis, Proceedings of the 11th International Scientific Conference „Contemporary Achievements in Mechanics, Manufacturing and Materials Science” CAM3S'2005, Gliwice-Zakopane, 2005, 436-443 (CD-ROM).
  • [12] S. Kallip, P. Laukkanen, A. Jänes, V. Sammelselg, J. Väyrynen, P. Miidla, E. Lust, Investigation of the surface topography and double layer characteristics of variously pretreated antimony single crystal electrodes, Surface Science 532-535 (2003) 1121-1126.
  • [13] A. Krauze, A. Ziębowicz, J. Marciniak, Corrosion resistance of intramedullary nails used in elastic osteosynthesis of children, Journal of Materials Processing and Technology 162-163 (2005) 209-214.
  • [14] J. Łaskawiec, R. Michalik, Theory and Applications of implants, Silesian University of Technology Press, Gliwice, 2002 (in Polish).
  • [15] F. Mansfed, Don't be afraid of Electrochemical Techniques-but use them withcare, Corrosion Science 44 (1998) 856-863.
  • [16] J. Marciniak, Biomaterials in bone surgery, Edited by Silesian University of Technology, Gliwice, 1992 (in Polish).
  • [17] J. Marciniak, Biomaterials, Silesian University of Technology Press, Gliwice, 2002 (in Polish).
  • [18] J. Marciniak, G. Nawrat, A. Korczyński, J. Czernie, Electropolishing and passivating methods of Cr-Ni-Mo steel, Polish Patent No. 153 639, 1991.
  • [19] J. Marciniak, G. Nawrat, Z. Paszenda, Methods of producing passive-carbon composite layers on surface implants of Cr-Ni-Mo steel, Polish Patent No. P 314 703, 1997.
  • [20] S. Mitura, A. Mitura, P. Niedzielski, P. Couvrat, Nanocrystalline diamond coatings, Chaos, Solitons and Fractals 10 (1999) 2165-2176.
  • [21] G. Nawrat, Research on the electropolishing methods of stainless steel, Doctoral Dissertation, Gliwice, 1980 (in Polish).
  • [22] G. Nawrat, W. Simka, Influence of anodic oxidation on corrosion resistance of Ti and Ti6Al14V alloy, Corrosion Protection 7 (2003) 5-10.
  • [23] G. Nawrat, J. Waś, M. Gonet, W. Simka, T. Bołd, Electrolytic polishing of Corrosion-Resistant Metal Stents, Polish Journal of Chemical Technology 5 (2003) 65-68.
  • [24] I. Özbek, B. A. Konduk, C. Bindal, A. H. Ucisik, Characterization of borided AISI 316L stainless steel implant, Vacuum 65 (2002) 521-525.
  • [25] G. Palasantzas, G. M. E. A. Backx, Roughness effects on the double-layer charge capacitance: the case of Helmholtz layer induced roughness attenuation, Surface Science 540 (2003) 401-406.
  • [26] R. W. Reve, Uhlig'Corrosion Handbook second edition, John Willeys and Sons, New York, 2000.
  • [27] S. A. Shabalovskaya, Surface, corrosion and biocompatibility aspects of Nitinol as an implant material, Bio-Medical Materials and Engineering, IOS Press 12 (2002) 69-109.
  • [28] J. Szewczenko, J. Marciniak, Corrosion of Cr-Ni-Mo steel implants electrically stimulated, Journal of Materials Processing Technology 175 (2006) 404-410.
  • [29] W. Trabelsi, L. Dhouibi, F. Matoussi, E. Triki, Modification of corrosion behavior of stainless steels with a poly-mmethoxytoluene coating, Synthetic Metals 151 (2005) 19-24.
  • [30] D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, EIS and XPS study of surface modification of 316LVM stainless steel after passivation, Corrosin Science 41 (1999) 275-289.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.