PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multilayer and gradient PVD coatings on the sintered tool materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents investigation results of structure and properties of the multilayer and gradient TiN+(Ti,Al,Si)N+TiN nanocrystalline coatings deposited with the PVD method (CAE -Cathodic Arc Evaporation process) and in the combination of Al2O3 and TiN coatings in the CVD process on the substrate of cemented carbides,cermets, Al2O3+ZrO2, Al2O3+TiC, Al2O3+SiC(w) oxide ceramics and Si3N4 nitride ceramics. Design/methodology/approach: The structural investigation includes the metallographic analysis on thetransmission and scanning electron microscope, confocal microscope. Examinations of the chemicalcompositions of the deposited coatings were carried out using the X-ray energy dispersive spectrograph EDS, glow-discharge optical emission spectroscope GDOS, and using the X-ray diffractometer. The investigation includes also analysis of the mechanical and functional properties of the material: substrate hardness tests and microhardness tests of the deposited coatings, surface roughness tests, evaluation of the adhesion of the deposited coatings, cutting properties of the investigated materials. Findings: Deposition of the multicomponent gradient coatings with the PVD method, based on the Al and Si solid secondary solution in the TiN titanium nitride, isomorphous with the alternating pure titanium nitride TiN, on tools made from oxide, nitride ceramics and tool cermets, results in the increase of mechanical properties in comparison with uncoated tool materials, deciding thus the improvement of their working properties. Practical implications: Deposition of (Ti,Al,Si)N nanocrystalline coatings by the use of PVD method causes the increase of cutting properties of tools made of cermets for ca. 300% and of Al2O3+ZrO2 for ca. 100% comparing to adequately uncoated tools. Originality/value: Comparison of the wide range of modern sintered tool materials with wide unique set of PVD coatings.
Rocznik
Strony
170--190
Opis fizyczny
Bibliogr. 50 poz., wykr.
Twórcy
autor
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniquesin Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L. A. Dobrzański, L. W. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201 (2008) 310-314.
  • [2] K. Gołombek, J. Mikuła, D. Pakuła, L.W. Żukowska, L. A. Dobrzański, Sintered tool materials with multicomponent PVD gradient coatings, Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 15-22.
  • [3] K. Gołombek, L. A. Dobrzański, Hard and wear resistant coatings for cutting tools, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 107-110.
  • [4] D. Pakuła, L. A. Dobrzański, Investigation of the structure and properties of PVD and CVD coatings deposited on the Si3N4 nitride ceramics Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 79-82.
  • [5] J. Mikuła, L. A. Dobrzański, PVD and CVD coating systems on oxide tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 75-78.
  • [6] L. A. Dobrzański, D. Pakuła, J. Mikuła, K. Gołombek, Investigation of the structure and properties of coatings deposited on ceramic tool materials, International Journal of Surface Science and Engineering 1/1 (2007) 111-124.
  • [7] L. A. Dobrzański, K. Lukaszkowicz, D. Pakuła, J. Mikuła, Corrosion resistance of multilayer and gradient coatings deposited by PVD and CVD techniques, Archives of Materials Science and Engineering 28/1 (2007) 12-18.
  • [8] L. A. Dobrzański, J. Mikuła, K. Gołombek, Structural characteristic of the modern sintered tool materials, Materials Science Forum 530-531 (2006) 499-504.
  • [9] L. A. Dobrzański, D. Pakuła, Structure and properties of the wear resistant coatings obtained in the PVD and CVD processes on tool ceramics, Materials Science Forum 513 (2006) 119-133.
  • [10] L. A. Dobrzański, D. Pakuła, A. Křiž, M. Sokovič, J. Kopač, Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics, Journal of Materials Processing Technology 175 (2006) 179-185.
  • [11] L. A. Dobrzański, K. Gołombek, E. Hajduczek, Structure of the nanocrystalline coatings obtained on the CAE process on the sintered tool materials, Journal of Materials Processing Technology 175 (2006) 157-162.
  • [12] L. A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3+ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167 (2005) 438-447.
  • [13] M. Soković, J. Mikuła, L. A. Dobrzański, J. Kopač, L. Kosec, P. Panjan , J. Madejski, A. Piech, Cutting properties of the Al2O3+SiC(w) based tool ceramic reinforced with the PVD and CVD wear resistant coatings, Journal of Materials Processing Technology 164-165 (2005) 924-929.
  • [14] L. A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics, Journal of Materials Processing Technology 164-165 (2005) 832-842.
  • [15] L. A. Dobrzański, J. Mikuła, Structure and properties of PVD and CVD coated Al2O3+TiC mixed oxide tool ceramics for dry on high speed cutting processes, Journal of Materials Processing Technology 164-165 (2005) 822-831.
  • [16] L. A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN+mono-, gradient-or multi(Ti,Al,Si)N+TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [17] D. Pakuła, L. A. Dobrzański, K. Gołombek, M. Pancielejko, A. Kiž: Structure and properties of the Si3N4 nitride ceramics with hard wear resistant coatings, Journal of Materials Processing Technology 157-158 (2004) 388-393.
  • [18] K. Gołombek, L. A. Dobrzański, M. Soković, Properties of the wear resistant coatings deposited on the cemented carbides substrates in the cathodic arc evaporation process, Journal of Materials Processing Technology 157-158 (2004) 341-347.
  • [19] L. A. Dobrzański, D. Pakuła, E. Hajduczek, Structure and properties of the multi-component TiAlSiN coatings obtained in the PVD process in the nitride tool ceramics, Journal of Materials Processing Technology 157-158 (2004) 331-340.
  • [20] L. A. Dobrzański, K. Gołombek, J. Kopač, M. Soković, Effect of depositing the hard surface coatings on properties of the selected cemented carbides and tool cermets, Journal of Materials Processing Technology 157-158 (2004) 304-311.
  • [21] M. Wysiecki, Contemporary Tool Materials, WNT, Warszawa, 1997, (in Polish).
  • [22] S. J. Skrzypek, New possibilities internal macro-stresses measurement using the g-sin2Ψ method at the constant glancing angle (SPK), Publisher AGH, Cracow, 2002, (in Polish).
  • [23] Yin-Yu Chang, Da-Yung Wang, Chi-Yung Hung, Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process, Surface and Coatings Technology 200 (2005) 1702-1708.
  • [24] M. Cłapa D. Batory, Improving adhesion and wear resistance of carbon coatings using Ti:C gradient layers, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 415-418.
  • [25] J. A. Ghani, I. A. Choudhury, H. H. Masjuki, Wear mechanism of TiN coated carbide and uncoated cermets tools at high cutting speed applications, Journal of Materials Processing Technology 153-154 (2004) 1067-1073.
  • [26] W. Grzesik, Z. Zalisz, S. Król, Tribological behaviour of TiAlN coated carbides in dry sliding tests, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 279-282.
  • [27] S. Hogmark, S. Jacobson, M. Larsson, Design and evaluation of tribological coatings, Wear 246 (2000) 20-33.
  • [28] P. Holubar, M. Jilek, M. Sima, Nanocomposite nc-TiAlSiN and nc-TiN-BN coatings: their applications on substrates made of cemented carbide and results of cutting tests, Surface and Coating Technology 120-121 (1999) 184-188.
  • [29] P. Holubar, M. Jilek, M. Sima, Present and possible future applications of superhard nanocomposite coatings, Surface Coatings Technology 133-134 (2000) 145-151.
  • [30] A. Jehn Hermann, Multicomponent and multiphase hard coatings for tribological applications, Surface and Coatings Technology 131 (2000) 433-440.
  • [31] I. Yu. Konyashin, Wear-resistant coatings for cermet cutting tools, Surface and Coatings Technology 71 (1995) 284-291.
  • [32] W. Lengauer, K. Dreyer, Functionally graded hardmetals, Journal of Alloys and Compounds 338 (2002) 194-212.
  • [33] T. Liu, C. Dong, S. Wu, K. Tang, J. Wang, J. Jia, TiN gradient and Ti/TiN multi-layer protective coatings on Uranium, Surface and Coating Technology 201 (2007) 6737-6741.
  • [34] D. Ma, S. Ma, K. Xu, Influence of Si content on nanostructured Ti-Si-N films coated by pulsed-d.c. Plasma enhanced CVD, Surface and Coatings Technology 184 (2004) 182-187.
  • [35] R. Manaila, A. Devenyi, D. Biro, L. David, P. B. Barna, A. Kovacs, Multilayer TiAlN coatings with composition gradient, Surface and Coatings Technology 151-152 (2002) 21-25.
  • [36] P. H. Mayrhofer, Ch. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Progress in Materials Science 51 (2006) 1032-1114.
  • [37] B. A. Movchan, Functionally graded EB PVD coatings, Surface and Coatings Technology 149 (2002) 252-262.
  • [38] B. Navinsek, P. Panjan, I. Milosev, PVD coatings as an environmentally clean alternative to electroplating and electroless processes, Surface and Coatings Technology 116-119 (1999) 476-487.
  • [39] A. Noyes-William: Publishing Ceramic Cutting Tools, Edited by Whitney, E.D., 1994.
  • [40] S. PalDey, S. C. Deevi Cathodic arc deposited FeAl coatings: properties and oxidation characteristics, Materials Science and Engineering A355 (2003) 208-215.
  • [41] S. PalDey, S. C. Deevi, Properties of single layer and gradient (Ti,Al)N coatings, Materials Science and Engineering A361 (2003) 1-8.
  • [42] S. PalDey, S. C. Deevi, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Materials Science and Engineering A342 (2003) 58-79.
  • [43] P. Panjan, I. Boncina, J. Bevk, M. Cekada, PVD hard coatings applied for wear protection of drawing dies, Surface and Coatings Technology 200 (2005) 133-136.
  • [44] Z. Peng, H. Miao, W. Wang, S. Yang, Ch. Liu, L. Qi, Hard and wear-resistant titanium nitride films for ceramic cutting tools by pulsed high energy density plasma, Surface and Coatings Technology 166 (2003) 183-188.
  • [45] H. G. Prengel, P. C. Jindal, K. H. Wendt, A. T. Santhanam, P. L. Hegde, R. M. Penich, A new class of high performance PVD coatings for carbide cutting tools, Surface and Coatings Technology 139 (2001) 25-34.
  • [46] X. Qiao, Y. Hou, Y. Wu, J. Chen, Study on functionally gradient coatings of Ti-Al-N, Surface and Coating Technology 131 (2000) 462-464.
  • [47] S. Tjong, H. Chen, Nanocrystalline materials and coatings, Materials Science and Engineering R45 (2004) 1-88.
  • [48] Y. Y. Tse, D. Babonneau, A. Michel, G. Abadias: Nanometer-scale multilayer coatings combining a soft metallic phase and a hard nitride phase: study of the interface structure and morphology, Surface Coatings Technology 180-181 (2004) 470-477.
  • [49] T. Wierzchoł, Structure and properties of multicomponent and composite layers produced by combined surface engineering methods, Surface and Coatings Technology 180-181 (2004) 458-464.
  • [50] J. Zhao, J. Deng, J. Zhang, X. Ai, Failure mechanisms of a whisker-reinforced ceramic tool when machining nickelbased alloys, Wear 208 (1997) 220-225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0002-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.