PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal characteristics of the AM50 magnesium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The goal of this publication is to demonstrate the laboratory metal casting simulation methodology based on controlled melting and solidification experiments. The thermal characteristics of the AM50 magnesium alloy during melting and solidification cycles were determined and correlated with the test samples' microstructural parameters. Design/methodology/approach: A novel methodology allowed to perform variable solidification rates for stationary test samples. The experiments were performed using computer controlled induction heating and cooling sources using Ar for melt protection and test sample cooling. Findings: Thermal analysis data indicated that the alloy’s melting range was between approximately 434 and 640° C. Increasing the cooling rate from 1 to 4° C/s during solidification process reduced the Secondary Dendrite Arm Spacing from approximately 64 to 43µm. The temperatures of the metallurgical reactions were shifted toward the higher values for faster solidification rates. Fraction liquid curve indicates that at the end of melting of the α (Mg)-β(Mg17Al12) eutectic, i.e., 454.2° C the alloy had a 2% liquid phase. Research limitations/implications: Future research is intended to address the development of a physical simulation methodology representing very high solidification rates used by High Pressure Die Casting (HPDC) and to assess the microstructure refinement as a function of solidification rates. Practical implications: Advanced simulation capabilities including non-equilibrium thermal and structural characteristics of the magnesium alloys are required for the development of advanced metal casting technologies like vacuum assisted HPDC and its heat treatment. Originality/value: The presented results point out the direction for future research needed to simulate the alloy solidification in a laboratory environment representing industrial casting processes.
Rocznik
Strony
179--182
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] B. L. Mordike, T. Ebert, Magnesium properties-applications-potentials, Materials Science and Engineering A302 (2001) 37-45.
  • [2] A. Luo, Magnesium: current and potential automotive applications, JOM 42-48, February, 2002.
  • [3] J. H. Sokołowski, W. T. Kierkus, M. Kasprzak, W. Kasprzak, Universal Metallurgical Simulator and Analyzer (UMSA) (US Patent No. 7,354,491 B2 April 8, 2008).
  • [4] W. T. Kierkus, J. H. Sokołowski, Recent advances in CCA: A new method of determining baseline equation, AFS Transactions 14 (1999) 161-167.
  • [5] H. Yamagata, H. Kurita, M. Aniołek, W. Kasprzak, J. H. Sokołowski, Thermal and metallographic characteristics of the Al-20% Si high-pressure die-casting alloy for monolithic cylinder blocks, Journal of Materials Processing Technology 199 (2007) 84-90.
  • [6] H. Yamagata, W. Kasprzak, M. Aniołek, H. Kurita, J. H. Sokołowski, The effect of average cooling rates on the microstructure of the Al-20% Si high pressure die casting alloy used for monolithic cylinder blocks, Journal of Materials Processing Technology 204 (2008) 132-140.
  • [7] H. Onda, K. Sakurai, T. Masuta, K. Oikawa , K. Anzai, W. Kasprzak, J. H. Sokołowski, The effect of solidification models on the prediction results of the temperature change of the aluminum cylinder head estimated by FDM solidification analysis, Trans Tech Publications, Switzerland, Materials Science Forum 561-565 (2007) 1967-1970.
  • [8] M. M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM International, (1999).
  • [9] Y. Fasoyinu, P. Newcombe, M. Sahoo, Lost foam casting of magnesium alloys AZ91D and AM50, AFS Transactions 114 (2006) 707-718.
  • [10] V. Y. Gertsman, J. Li, S. Xu, J.P. Thomson, M. Sahoo, Microstructure and second phase particles in low and high pressure die cast magnesium alloy AM50, Metallurgical and Materials Transactions A 36A 8 (2005) 1989-1997A.
  • [11] F. Habashi, Alloys-Preparation, Properties, Applications, Wiley-Vch (1998), 151-164.
  • [12] L. Han, H. Hu, D. Northwood, N. Lie, A calorimetric analysis of dissolution of second phases in as-cast AM50 alloys, Magnesium Technology 12 (2007) 369-373.
  • [13] D. Mirkovic, R. Schmid-Fetzer, Solidification curves for commercial Mg alloys determined from Differential Scanning Calorimetry with improved heat-transfer modeling, Metallurgical and Materials Transactions A 38A (2007) 2575-2592.
  • [14] M. Ohno, D. Mirkovic, R. Schmid-Fetzer, Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys, Materials Science and Engineering A 421 (2006) 328-337.
  • [15] Y. W. Riddle, L. P. Barber, M. M. Makhlouf, Characterization of Mg solidification and as-cast microstructures, Magnesium Technology 12 (2004) 203-208.
  • [16] L. A. Dobrzański, W. Kasprzak, J. H. Sokolowski, Analysis of the Al-Si Alloy structure development using thermal analysis and rapid quenching techniques, Proceedings of the 12th Scientific International Conference "Achievements in Mechanical and Materials Engineering", AMME'2003, Gliwice-Zakopane, 2003, 225-228.
  • [17] L. A. Dobrzański, T. Tański, L. Čížek, Z. Brytan, Structure and properties of the magnesium casting alloys, Journal of Materials Processing Technology 192-193 (2007) 567-574.
  • [18] L. A. Dobrzański, T. Tański, J. Trzaska, L. Čížek, Modelling of hardness prediction of magnesium alloys using artificial neural networks applications, Journal of Achievements in Materials and Manufacturing Engineering, 26/2 (2008) 187-190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0001-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.