PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The structure of austenitic steel AISI 316 after ECAP and low-cycle fatigue

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The article presents results of investigation of structure and properties of austenitic steel grade AISI 316 after application of Equal Channel Angular Pressing (ECAP) at the temperature of approx. 290° C. Design/methodology/approach: The ECAP method led to significant improvement of strength of investigated material. Experiments were planned and realised at the temperature ranging from room temperature up to above mentioned temperature. Findings: It was established with use of the EBSD technique that after 8 passes through the ECAP die the sub-grains with an angle of disorientation smaller than 10° formed less than 20% of resulting structure. Average size of austenitic grains with high angle boundary after 8 passes was approx. 0.32 µm. It was proven that the ECAP method enables obtaining of ultra fine-grained austenitic structure formed by recrystallised grains with very low density of dislocations. Practical implications: The Technology ECAP was applied on austenitic steel AISI 316. It was verification of ECAP application possibility on steel AISI 316 importantly for following applying on similar kinds of steel, because ECAP technology influence on fatigue properties was confirmed. Originality/value: It can be predicted on the basis of obtained results that, contrary to low-cycle fatigue the ultra-fine grained material will manifest at fatigue load in the mode of constant amplitude of stress higher fatigue characteristics, particularly fatigue limit.
Rocznik
Strony
151--158
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
autor
autor
autor
  • Faculty of Metallurgy and Materials Engineering, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava - Poruba, Czech Republic, miroslav.greger@vsb.cz
Bibliografia
  • [1] M. Greger, R. Kocich, L. Čížek, Z. Muskalski, Mechanical properties and microstructure of Al alloys produced by SPD process, Proceedings of the 10th International Conference TMT'06, Barcelona, 2006, 253-256.
  • [2] M. Greger, R. Kocich, L. Čížek, L. A. Dobrzański, M. Widomská, B. Kuřetová, A. Silbernagel, The structure and mechanical properties of chosen metals after ECAP, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 103-106.
  • [3] Q. Xue, X. Z. Liao, Y. T. Zhu, G. T. Gray, Formation mechanisms of nanostructures in stainless steel during high-strain-rate severe plastic deformation, Materials Science and Engineering 25 (2005) 252-256.
  • [4] A. Nowotmik, J. Sieniawski, M. Wierzbinska, Austenite decomposition in carbon steel under dynamic deformation conditions, Journal of Achievements in Materials and Manufacturing Engineering 20 (2006) 267-270.
  • [5] M. Jablonska, K. Rodak, G. Niewielski, Characterization of the structure of FeAl alloy after hot deformation, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 107-110.
  • [6] Y. Fukuda, K. Ohishi, Z. Horita, T. G. Langdon, Processing of a low-carbon steel by equal-channel angular pressing, Acta Materialia 50 (2002) 1359-1368.
  • [7] L. A. Dobrzański, Engineering materials and materials design. Fundamentals of Materials Science and Physical Metallurgy, WNT, Warsaw, 2006 (in Polish).
  • [8] M. Borisova, S. P. Yakovleva, A. M. Ivanov, Equal channel angular pressing its effect on structure and properties of the constructional steel St3, Solid state Phenomena 114 (2006) 97-100.
  • [9] K. Rodak, M. Pawlicki, Microstructure of ultrafine-grained Al produced by severe plastic deformation, Archives of Material Science and Engineering 28/7 (2007) 409-412.
  • [10] J. Zrník, S. V. Dobatkin, L. Kraus, Influence of thermal condition of ECAP on microstructure evolution in low carbon steel, Materials Science Forum 558-559 (2007) 611-616.
  • [11] A. Hernas, G. Moskal, K. Rodak, J. Pasternak, Properties and microstructure of 12%Cr-W steels after long-term service, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 69-72.
  • [12] M. Greger, R. Kocich, L. Čížek, L. A. Dobrzański,M. Widomská, Influence of ECAP technology on the metal structures and properties, Archives of Materials Science and Engineering 28/12 (2007) 709-716.
  • [13] D. H. Shin, C. W. Seo, J. Kim, K. T. Park, W. Y. Choo, Microstructures and mechanical properties of equal-channel angular pressed low carbon steel, Scripta Materialia 42/7 (2000) 695-699.
  • [14] V. M. Segal, Materials processing by simple sudar,Materials Science and Engineering 97/2 (1995) 157-164.
  • [15] I. H. Son, Y. G. Jin, Y. T. Im, Finite element investigation of fiction condition in equal channel angular extrusion, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 285-285.
  • [16] B. Koczurkewicz, The model of prediction of the micro-structure austenite C-Mn steel, Archives of Material Science and Engineering 28/7 (2007) 421-424.
  • [17] R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Materials Science and Engineering168/2 (1993) 141-148.
  • [18] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained material, Scripta Materialia 35/2 (1996) 143-146.
  • [19] D. H. Shin, W. J. Kim, W. Y. Choo, Grain refinement of a commercial 0.15%C steel by equal-channel angular pressing, Scripta Materialia 41/3 (1999) 259-262.
  • [20] D. H. Shin, B. Ch. Kim, K. T. Park, W. Y. Choo, Microstructural changes in equal channel angular pressed low carbon steel by static annealing, Acta Materialia 48 (2000) 3245-3252.
  • [21] J. De Messemaeker, B. Verlinden, J. Van Humbeeck, Texture of IF steel after equal channel angular pressing (ECAP), Acta Materialia 53/5 (2005) 4245-4257.
  • [22] R. Kocich, M. Greger, A. Machačková, FEM simulation of extrusion by ECAP method on magnesium alloy AZ91, International Journal Computational Materials Science and Surface Engineering 1/4 (2007) 438-451.
  • [23] M. Greger, Microstructure of ultrafine-grained metals after ECAP, Proceedings of thr 11th International Conference TMT'2007, Hammamet, 2007, 1531-1534.
  • [24] M. Greger, R. Kocich, L. Čížek, L. A. Dobrzański, I. Jučička, Possibilities of mechanical properties and microstructure improvement of magnesium alloys, Archives of Materials Science and Engineering 28/2 (2007) 83-90.
  • [25] M. Greger, R. Kocich, L. Čížek Structure and low-cycle fatigue of steel AISI 316 after ECAP, Journal of Achievements in Materials and Manufacturing Engineering (2008) (in print).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0001-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.