PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal and structural characteristics of the AM50 magnesium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
Purpose: The goal of this publication is to demonstrate the laboratory metal casting simulation methodology based on controlled melting and solidification experiments. The thermal characteristics of the AM50 magnesium alloy during melting and solidification cycles were determined and correlated with the test samples' microstructural parameters. Design/methodology/approach: A novel methodology allowed to perform variable solidification rates for stationary test samples. The experiments were performed using computer controlled induction heating and cooling sources using Argon for melt protection and test sample cooling. Findings: Thermal analysis data indicated that the alloy's melting range was between approximately 434 and 640° C. Increasing the cooling rate from 1 to 4° C/s during solidification process reduced the Secondary Dendrite Arm Spacing from approximately 64 to 43µm. The temperatures of the metallurgical reactions were shifted toward the higher values for faster solidification rates. Fraction liquid curve indicates that at the end of melting of the α(Mg)-β (Mg17Al12) eutectic, i.e., 454.2° C the alloy had a 2% liquid phase. Research limitations/implications: Future research is intended to address the development of a physical simulation methodology representing very high solidification rates used by High Pressure Die Casting (HPDC) and to assess the microstructure refinement as a function of solidification rates. Practical implications: Advanced simulation capabilities including non-equilibrium thermal and structural characteristics of the magnesium alloys are required for the development of advanced metal casting technologies like vacuum assisted HPDC and its heat treatment. Originality/value: The presented results point out the direction for future research needed to simulate the alloy solidification in a laboratory environment representing industrial casting processes.
Rocznik
Strony
131--138
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
autor
Bibliografia
  • [1] B. L. Mordike, T. Ebert, Magnesium properties-applications-potentials, Materials Science and Engineering A302 (2001) 37-45.
  • [2] Y. W. Riddle, M. M. Makhlouf, Characterizing solidification by non-equilibrium thermal analysis, Proceedings of the 132nd TMS Annual Meeting "Magnesium Technology", San Diego, 2003, 101-106.
  • [3] N. Saunders, X. Li, A. P. Miodownik, J-Ph. Schille, Modeling of the thermo-physical properties relevant to solidification, Proceedings of the 10th International Conference "Modeling of Casting, Welding and Advanced Solidification Processes", 2003, 669-676.
  • [4] H. Yamagata, H. Kurita, M. Aniolek, W. Kasprzak, J. H. Sokolowski, Thermal and metallographic characteristics of the Al-20%Si high-pressure die-casting alloy for monolithic cylinder blocks, Journal of Materials Processing Technology 199 (2007) 84-90.
  • [5] L. A. Dobrzański, W. Kasprzak, J. H. Sokolowski, Analysis of the Al-Si alloy structure development using thermal analysis and rapid quenching techniques, Proceedings of the 12th Scientific International Conference "Achievements in Mechanical and Materials Engineering" AMME'2003, Gliwice-Zakopane, 2003, 225-228.
  • [6] J. Chen, W. Kasprzak, J.H. Sokolowski, Metallurgical aspects of novel approach to reduce the heat treatment process for Al based alloys by utilization of heat from the solidification process, Journal of Materials Processing Technology 176 (2006) 24-31.
  • [7] L. Han, H. Hu, D. Northwood, A comparative study on the solution treatment of Mg-Al and Mg-Al-Ca alloys, Proceedings of the 137th TMS Annual Meeting "Magnesium Technology", New Orleans, 2008.
  • [8] L. Han, H. Hu, D. Northwood, N. Lie, A calorimetric analysis of dissolution of second phases in as-cast AM50 alloys, Proceedings of the 136th TMS Annual Meeting "Magnesium Technology", Orlando, 2007, 369-373.
  • [9] Y. Fasoyinu, J. Barry, M. Sahoo, P. Labelle, D. Wang, R. A. Overfelt, Thermophysical properties of magnesium alloys AE42, AJ52X and AM60B, AFS Transactions 111 (2003) 1031-1052.
  • [10] H. Onda, K. Sakurai, T. Masuta, K. Oikawa, K. Anzai, W. Kasprzak, J. H. Sokolowski, The effect of solidification models on the prediction results of the temperature change of the aluminum cylinder head estimated by FDM solidification analysis, Materials Science Forum 561-565 (2007) 1967-1970.
  • [11] M. M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM International, Ohio, 1999.
  • [12] Y. Fasoyinu, P. Newcombe, M. Sahoo, Lost foam casting of magnesium alloys AZ91D and AM50, AFS Transactions 114 (2006) 707-718.
  • [13] V. Y. Gertsman, J. Li, S. Xu, J. P. Thomson, M. Sahoo, Microstructure and second phase particles in low and high pressure die cast magnesium alloy AM50, Metallurgical and Materials Transactions 36A/8 (2005) 1989-1997.
  • [14] F. Habashi, Alloys-Preparation, Properties, Applications, Wiley-VCH, Weinheim, 1998.
  • [15] A. Luo, H. Hu, J. Lo, Microstructure and mechanical properties of squeeze cast AZ91D magnesium alloy, Light Metals (1996) 377-387.
  • [16] A. Luo, Magnesium: current and potential automotive applications, JOM 54/2 (2002) 42-48.
  • [17] A. Luo, A. K. Sachdev, P. H. Fu, L. M. Peng, H. Y. Jiang, C. Q. Zhai, Y. D. Yu, Low pressure die casting of AZ91 and AM50 magnesium alloys, AFS Transactions (2008).
  • [18] J. H. Sokolowski, W. T. Kierkus, M. Kasprzak, W. Kasprzak, US Patent No. 7,354,491 B2 (2008).
  • [19] W. T. Kierkus, J. H. Sokolowski, Recent advances in CCA: A new method of determining baseline equation, AFS Transactions 14 (1999) 161-167.
  • [20] D. Mirkovic, R. Schmid-Fetzer, Solidification curves for commercial Mg alloys determined from differential scanning calorimetry with improved heat-transfer modeling, Metallurgical and Materials Transactions 38A (2007) 2575-2592.
  • [21] M. Ohno, D. Mirkovic, R. Schmid-Fetzer, Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys, Materials Science and Engineering A 421 (2006) 328-337.
  • [22] Y. W. Riddle, L. P. Barber, M. M. Makhlouf, Characterization of Mg solidification and as-cast microstructures, Magnesium Technology (2004) 203-208.
  • [23] J. W. Fruehling, J. D. Hanawalt, Protective atmospheres for melting magnesium alloys, Modern Casting 56/2 (1969) 159-164.
  • [24] Ch. Tian, D. Albright, Fundamentals of magnesium melt handling in the die casting foundries, Die Cast Engineer (2003) 38-44.
  • [25] T-S. Shih, J-H. Wang, K-Z. Chong, Combustion of magnesium alloys in air, Materials Chemistry and Physics 85 (2004) 302-309.
  • [26] L. A. Dobrzański, T. Tański, L. Čížek, Z. Brytan, Structure and properties of the magnesium casting alloys, Journal of Materials Processing Technology 192-193 (2007) 567-574.
  • [27] L. A. Dobrzański, T. Tański, L. Čížek, Characterization of MCMgAl9Zn1 MCMgAl6Zn1 magnesium alloys structure, Journal of Materials Engineering 157-158 (2007) 381-386.
  • [28] L. A. Dobrzański, T. Tański, L. Čížek, Heat treatment impact on the structure of die-cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 431-434.
  • [29] L. A. Dobrzański, T. Tański, J. Trzaska, L. Čížek, Modelling of hardness prediction of magnesium alloys using artificial neural networks applications, Journal of Achievements in Materials and Manufacturing Engineering, 26/2 (2008) 187-190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0001-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.