PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of high temperature deformation on the structure of Ni based superalloy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: A study on the hot deformation behaviour and dynamic structural processes (dynamic precipitation operating during deformation at elevated temperatures) of nickel based superalloy was presented. Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloy of Inconel 718 at constant true strain rates of 10-4, 4x10-4s-1 within a temperature range of 720-1150° C. True stress-true strain curves and microstructure analysis of hot deformed alloy were described. Microstructure examination has been carried out on the compressed samples of Inconel 718 alloy using an optical microscope - Nikon 300 and in the scanning electron microscope HITACHI S-3400 (SEM) in a conventional back-scattered electron mode on polished sections etched with Marble's solution. Findings: Structural observations of deformed at high temperatures, previously solution treated Inconel alloy revealed non uniform deformation effects. Distribution of molybdenum-rich carbides was found to be affected by localized flow within the investigated strain range at relatively low deformation temperatures 720 - 850° C. Microstructural examination of the alloy also shown that shear banding, cavities growth and intergranular cracks penetrating through the whole grains were responsible for decrease in the flow stress at temperature of 720, 800 and 850° C and a specimen fracture at larger strains. On the basis of received flow stress values activation energy of a high-temperature deformation process was estimated. Mathematical dependences (σ pl -T and σ pl - ) and compression data were used to determine material's constants. These constants allowed to derive a formula that describes the relationship between strain rate (ε), deformation temperature (T) and flow stress σ pl. Research limitations/implications: Even though, the light optical microstructure observation of deformed samples revealed some effects of heterogeneous distribution of the phase components, in order to complete and confirm obtained results it is recommended to perform further analysis of the alloy by using transmission electron microscopy technique (TEM). Practical implications: Interaction of precipitation process developed during deformation below solvus temperature and heterogenuos deformation (flow localization) can become a significant aspect of high temperature performance of precipitation hardenable alloys and may perhaps also allow produce specific microstructures of such deformed materials. Originality/value: It is a scarcity of data which are to describe specific features of phase transformation processes in precipitation hardenable alloys. In addition, existing data do not allow to simplify structural features of dynamic precipitation and simplifying structural description of the process. The compression tests on age hardenable alloys and the analysis of dynamic precipitation process have got a practical meaning.
Rocznik
Strony
115--122
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
  • Department of Materials Science, Rzeszów University of Technology, ul. W. Pola 2, 35-959 Rzeszów, Poland, nowotnik@prz.edu.pl
Bibliografia
  • [1] M. Niewczas, E. Evangelista, L. Błaż, Strain localization during a hot compression test of Cu-Ni-Cr-Si-Mg alloy, Scripta Metallurgica et Materiallia 27 (1992) 1735-1740.
  • [2] A. A. Hameda, L. Błaż, Microstructure of hot-deformed Cu-3.45 wt.% Ti alloy, Materials Science and Engineering, A254 (1998) 83-89.
  • [3] A. A. Hameda, L. Błaż, Scripta Materialia, Flow Softening During Hot Compression of Cu 3.45wt.%Ti Alloy 12 (1997) 1987-1993.
  • [4] J. J. Jonas, I. Weiss, Material Science and Engineering, Effect of precipitation on recrystallization in microalloyed steels 13 (1979) 238-245.
  • [5] A. Korbel, W. Bochniak, F. Ciura, H. Dybiec, K. Pieła: Proceedings of Sessions and Symposia sponsored by the Extraction and Processing Division, held at the TMS Annual Meeting in Ontario, Florida USA, 1997, 301-312.
  • [6] A. Korbel, W. Bochniak, F. Ciura, H. Dybiec, K. Pieła, The 'natural' metal-matrix composite formation by thermo-mechanical treatments, Journal of Materials Processing Technology 78 (1998) 104-111.
  • [7] A. K. Lis, J. Lis, High strength hot rolled and aged microalloyed 5%Ni steel, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 37-42.
  • [8] L. Skálová, R. Divišová, D. Jandová, Thermomechanical processing of low alloy TRIP steel, Proceedings of the 12thScientific International Conference "Achievements in Mechanical and Materials Engineering" AMME'2003, Gliwice-Zakopane, 2003, 249-252.
  • [9] D. Jandová, Influence of hot and warm deformation on austenite decomposition, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 375-378.
  • [10] D. Jandová, J. Rehor, Z. Nový, Microstructural changes taking place during the thermo-mechanical processing and cold working of steel 18Cr18Mn0,5N, Journal of Materials Processing Technology 157-158 (2004) 523-530.
  • [11] M. Jabłońska, K. Rodak, G. Niewielski, Characterization of the structure of FeAl alloy after hot deformation, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 107-110.
  • [12] H. Huoran, Ch. Qi'an, L. Qingyou, D. Han, Grain refinement of a Nb-Ti microalloyed steel through heavy deformation controlled cooling, Journal of Materials Processing Technology 137 (2003) 173-176.
  • [13] J. Adamczyk, M. Carsi, R. Kozik, R. Wusatowski, Structure evolution during hot deformation of a C-Mn-V-N steel grade, Journal of Materials Processing Technology 53 (1995) 15-22.
  • [14] A. Nowotnik, L. Błaż, J. Sieniawski, Phase deformation in 0.16%C steel under hot deformation conditions, Proceedings of the Seminar Devoted to the 70th Birthday Anniversary of Prof. Z. Jasieński, Deformation instability in recrystallization and plastic working processes, Kraków 2005, 213-218.
  • [15] A. Nowotnik, L. Błaż, J. Sieniawski, Interaction of phase transformation and deformation process during hot deformation of 0.16%C steel, Defect and Diffusion Forum, 237-240 (2005) 1240-1245.
  • [16] C. M. Sellars, W. J. Tegart, La relation entre le resistance et la structure dans la deformation a chaud, Membrane Science Review Metllurgy 63 (1966) 731-746.
  • [17] S. F. Medina, C. A. Hernandez, Modelling austenite flow curves in low alloy and microalloyed steels, Acta Metallurgy 44 (1996) 137.
  • [18] W. J. Weis, E.A. Lodia, Superalloy 718 - Metallurgy and Applications, TMS Warrendale PA (1989) 161.
  • [19] S. C. Madeiros, Y. V. R. K. Prasad, W. G. Frazier, R. Srinivasan, Materials Science Engineering A293 (2000) 198.
  • [20] A. Nowotnik, J. Sieniawski, M. Wierzbinska, Austenite decomposition in carbon steel under dynamic deformation conditions, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 105-108.
  • [21] C. M. Sellars, W. J. Tegart, Progresses in Fracture and Strength of Materials and Structures Membrane Science Review Metllurgy 63 (1966) 731-740.
  • [22] X. X. Xia, H. J. Sakaris, H. J. McQueen, Hot deformation, dynamic recovery and recrystallisation behaviour of aluminium 6061-SiCp composite, Materials Science Technology 10 (1994) 487-496.
  • [23] B. Lopez, J. J. Urcola, Hot deformation characteristics of Inconel 625, Materials Science Technology 12 (1996) 673-678.
  • [24] W. J. Weis, E.A. Loria (Ed.) Superalloy 718 - Metallurgy and Applications, Hot Deformation Behavior of an As-Cast Alloy 718 Ingot TMS, Warrendale PA (1989) 135-154.
  • [25] S. C. Medeiros, Y. V. R. K. Prasad, W. G. Frazier, R. Srinivasan, Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy, Materials Science Engineering A293 (2000) 198-201.
  • [26] R. Sandstörm, R. Lagneborg, A model for static recrystallization after hot deformation, Acta Metallurgica23 (1975) 481-489.
  • [27] A. J. Mc Laren, C. M. Sellars, Modelling distribution of microstructure during hot rolling of stainless steel, Materials Science and Technology 8 (1992) 1090-1098.
  • [28] A. A. Guimaraes, J. J. Jonas, Recrystallization and aging effects associated with the high temperature deformation of waspaloy and inconel 718, Metallurgical and Materials Transactions A 12 (1981) 1655-1666.
  • [29] A. Nowotnik, Mechanical and structural aspects of high temperature deformation in Ni alloy, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 143-146.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAW-0001-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.