
Systems integration with integrating bus
in SOA architecture using patterns

Dawid Adach1, Włodzimierz Dąbrowski1, Andrzej Stasiak

Wojskowa Akademia Techniczna, Wydział Cybernetyki,
00-908 Warszawa, ul. S. Kaliskiego 2, astasiak@wat.edu.pl

1Politechnika Warszawska, Instytut Sterowania i Elektroniki Przemysłowej,
00-662 Warszawa, ul. Koszykowa 75, dawid@adach.com, w.dabrowski@ee.pw.edu.pl

Abstract. This article describes a method for determining patterns of adapters structures for systems
using ESB bus. In the proposed method, we wanted the design of the master adapter structure to be
determined by the appropriate division dedicated adapters. Created adapters are strongly connected
internally, because the process of canonization allow you to communicate only with the processes
in the same domain (functional area). In addition, we assumed that the set standards should lead
to the elimination of critical points and bottlenecks of the built system, and increase efficiency
in communication and effectiveness of resource management. The method was tested in the Tibco
ESB environment, while working on a solution for the telecommunications operator.
Keywords: System integration (SI), EAI, ESB, patterns for ESB, canonical ESB adapters, SOA​​, UML

1. Introduction

When in the late 70’s the IT market started growing rapidly and foundations of
Service Oriented Architecture (SOA) (it had not been named so yet) were created,
the new problem appeared — the problem of Systems Integration. The following
article describes practical approach to the subject of systems integration which is
supported by the authors’ experience obtained from implementation of Enterprise
Service Bus (ESB) in leading Polish telco operator. The article contains review of
proposed patterns recommended while building integrating bus, their verification
on a real platform, and proposals of their enhancement held by examples which
explain the need of standard solutions’ expansion. The aim of the following article

Biuletyn WAT
Vol. LXII, Nr 1, 2013

144 D. Adach, W. Dąbrowski, A. Stasiak

is to show common problems which appear during the systems integration process.
The article contains an analysis of popular integration problems and different
approaches of solving them. It describes problems related to a process of system
integration like different communication patterns or transaction activities; basics
assumptions, and recommended approach of Service Oriented.

2. Integration

Integration is a very wide term which contains many issues. To start with simple
integration of two systems using build-in tools to exchange messages, through
complex integration of data and functionality to finish with total integration of
almost all systems (and subsystems), databases, joint order management etc.

We can split the integration into four main areas [1]:
—	A pplication integration — all activities connected with implementation of

specialized software (the trade software);
—	 Data integration — activities which purpose is to eliminate duplicates from

database and also elements which are redundant;
—	W eb integration — activities related to installation of local and extensive

networks, structural wiring, fibers etc.;
—	S ystems integration — activities in the field of installation operating systems,

databases, office and communication software, structural wiring, active
network devices, mass device storage, internet accesses, access control,
supply etc.

As definitions above show, integration in IT is very wide and complex term.
Systems integration as the largest one and least defined should be treated as a separate
type that operates together with other integration types. Therefore, there is no one
correct solution (or instruction) — on “how to integrate systems”. Each case is
individual and all of them should be treated respectively.

We can distinguish three main types of systems integration due to the method
of integration. The most popular and the worst from technical point of view — Star
Integration, integration of group of systems with similar functionalities — Vertical
Integration and actually the best approach but also the most labour-intensive —
Enterprise Service Bus (Horizontal Integration).

2.1.	 Star integration

Star Integration, also known as Spaghetti Integration [2] because of amount
of connections, is the most popular type of integration (Fig. 1). Popularity of this
solution is a consequence of lack of long-term planning or sudden expansion of
the company.

145Systems integration with integrating bus in SOA architecture using patterns

Star Integration is recommended when only a few systems need to be connected
or for the companies where implementing SOA is not remunerative. It is also used
when majority of systems is supplied by one provider (e.g. SAP) and systems contain
built-in tools to integrate with other systems. In other case, each system has to adapt
to others by creating dedicated adapters. It means that a system which primarily
used to use one protocol (e.g. HTTP) and language (e.g. XML) has to create a new
adapter which will support communication patterns used by all other systems to
communicate with them.

Management and maintenance of such architecture is also inconvenient. Lack
of global preview, distributed and different types of logs and the last but not the least
— difficult and expensive extensibility (adding a new system demands creation of
new adapters in many systems) causes that Star Integration is not recommended
for medium and big companies.

2.2.	 Vertical integration

Vertical Integration presents different approach to the case (Fig. 2). It is a process
of gathering subsystems responsible for similar areas in bigger entities also often
called silos. Communication among systems in one area is hidden behind other
ones. Communication between areas takes place in dedicated adapters controlled
by the process control system responsible for specified area.

The advantage of this approach is that the integration is performed quickly
and involves only the necessary vendors therefore this method is cheaper in
short term. On the other hand, cost of ownership can be substantially higher

Fig. 1. Visualization of Star Integration

146 D. Adach, W. Dąbrowski, A. Stasiak

Fi
g.

 2
. V

isu
al

iz
at

io
n

of
 V

er
tic

al
 In

te
gr

at
io

n

147Systems integration with integrating bus in SOA architecture using patterns

than in other methods, since in case of new or enhanced functionality, the only
possible way to implement (scale of the system) would be implementing
another silo. Reusing subsystems to create functionality is not possible.
Integration model shown in Fig. 2A was formally represented using UML in Fig. 2B
and Fig. 2C. In the presented IT architecture view, the standard localizations’ elements
placed in them (group of systems) and traffic routes (relations) were determined
according to the UPIA standards. Meanwhile Fig. 2C presents formal representation
of communication among systems described in Fig. 2A.

2.3.	 Horizontal integration

Horizontal Integration is often referred to as Enterprise Service Bus (ESB) due to
the shape of such architecture. Implementation of the ESB allows for communication
among systems to other without need for implementing additional adapters dedicated
for each system. This approach allows for cutting the number of interfaces to only
one per system. Each system will be connected directly to the bus using dedicated
adapter. Architecture of Enterprise Service Bus is presented in (Fig. 3).

Fig. 3. Enterprise Service Bus and Legacy Systems (on sketch UML diagram)

The Enterprise Service Bus is the most flexible of all types of integration.
Assuming that interfaces become stable, it is extremely easy to completely replace one
system with another one. The ESB is capable of translating communication among
systems, which enables cutting costs of integration and provides extreme flexibility
of architecture. It is also very easy to plug new systems to the bus. If replacement/
extension of some system requires a change in interface, it is significantly less
laborious because it requires modification of only one adapter.

148 D. Adach, W. Dąbrowski, A. Stasiak

3. SOA architecture

Service Oriented Architecture (SOA) is an architectural style that mainly put
emphasis on defining services which fit to the business patterns. Services are business
functionalities that are built as software components (black boxes) that can be
reused for different purposes. The main purpose of SOA is to increase (optimize)
collaboration between business and IT department.

The main assumptions of SOA [5]:
—	SOA is for building business applications;
—	SOA is a black-box component architecture;
—	SOA components are loosely coupled;
—	SOA components are orchestrated to link together through business process

to deliver a well-defined level of service.
First of them makes an assumption that the SOA is explicitly intended for

building business application. The SOA is not dedicated for building every kind
of software. Despite the fact that this architectural style suits also to many various
types of projects, it was designed and adapted for building business supporting
applications.

As it was mentioned, one of the main SOA establishments is to hide
implementation’s details. The black-box approach enables us to reuse existing
business applications by adding a simple adapter to them, no matter how they
were built. Farther, the SOA prescribes to differentiate amount of details visible for
particular users.

Term “loosely coupled” in the third assumption refers to the way how
components interact with the SOA. One component passes data to another
component, the second one request further to third, third to fourth and so on until
request achieves the destination point. When request is synchronous, responses back
to the originator through the same components which carry them during request.
Each component offers a small range of simple services to other components,
the emphasis is on simplicity and autonomy. The same operation could be done
by tightly structured application, but the set of “loosely coupled” can be combined
and recombined in myriad ways. That makes the overall IT infrastructure much
more flexible.

The last but for sure not the least, is an assumption that defines how components
collaborate and group to cover business requirements. The fragmentation, which is
required by previous assumptions, makes a simple arrangement of components that
can collectively deliver very complex services to cover requirements of the business.
According to the SOA establishments, IT should provide acceptable service levels.
To meet this challenge, architects should lay huge stress on quality of delivered
components.

149Systems integration with integrating bus in SOA architecture using patterns

4. ESB architecture

4.1.	 Structure

According to the SOA assumptions, the ESB comprise components responsible for
providing various functionalities at different level of abstraction. Some components
are responsible for communications at physical layer’s level (e.g. adapter to database),
others one work as an interface in particular systems in company. The components
inside the ESB as a rule are divided into sections responsible for executing business
field, such as e.g. authorization of client’s area which includes components executing
minor tasks (e.g. downloading data to logging). Basically, we can divide the components
into adapters responsible for communication (Fig. 4) with external systems (adapters)
and internal ESB components fulfilling specific functionality (broker) [4] (Fig. 7).

Adapters are divided into two basic categories (Fig. 5):
—	O utbound — initiated by clients, adapters that enable sending orders from

system to ESB (Client Adapter);
—	I nbound — initiated by ESB, adapters responsible for sending orders from

ESB to domain system (Provider Adapter).

Fig. 4. Architecture of Enterprise Service Bus — Adapters and Brokers

150 D. Adach, W. Dąbrowski, A. Stasiak

4.2.	 Outbound adapters

Client Adapter is a component exposing an interface, which enables sending
demands and orders from domain system, and receiving answers to the demands sent
earlier. Furthermore, these kinds of adapters are responsible for translating statements
from legacy language (data model) into language used inside ESB (CDM).

Client Adapters applies a communicative protocol which is used by the system
for which they are the adapter. At the same time, they are in charge of translating
command into different pattern when the one used by the system is different from
the one accepted inside the ESB. This transformation takes place twice in case of
synchronous communication — first time during sending the first demand, second
while receiving feedback.	

The most of business operations’ base on message exchange. Information
about clients, addresses, services and all other are transferred from one system to
another to realize business logic. Multiplicity of messages makes such management
of that information difficult. To avoid mess and to make management and tracing
of messages easier systems is using headers. The headers are the metadata that
describe information sending as a main content. Usually, headers are designed
for specified system needs and they are different among other systems. Next, duty
of adapters is to translate headers from a system model to common headers used
inside the ESB. Adapter must also handle a situation when domain systems do not
support the headers.

Mentioned patterns were positively verified in practical implementation of ESB
for the client and they allowed us to resolve problems such as:

—	 different data models among domain systems which were translated on
the client adapters level;

Fig. 5. Inbound and Outbound adapters

151Systems integration with integrating bus in SOA architecture using patterns

—	 different communication patterns (more than 10 different patterns used
by client);

—	 different headers (models, structure, multiplicity etc.), translated on the
client adapters level.

4.3.	 Brokers

Apart from previously mentioned types of adapters, which provide implementation
of simple operation, another important type of components are the Brokers —
responsible for realization of complex logic queries and promoting, and delivering
messages to the appropriate systems (adapters) according to the implemented rules
[6] (Fig. 8). Brokers can perform very complex tasks such as:

—	 decomposition of demands for specific tasks;
—	 execution of specific tasks in a specific order;
—	 enrichment of demands for data from other systems;
—	 errors handling during the process of calling particular steps;
—	 service priorities in case of a large number of demands;
—	 queuing incoming demands.
Brokers, also called Composite Services, implemented in corporation can be

very complex services executing above mentioned tasks at once or can be minor
processes executing only part of the presented functionalities.

A characteristic feature of Composite Services is its placement — inside the ESB
and thus it is restricted to legacy systems through adapters. Thanks to this architecture,
Composite Services use purely and simply Canonical Data Model both — the input
and output of components (Fig. 6). This allows us, according to the SOA assumptions,
to realize purely and simply the tasks assigned to specific components.

Fig. 6. Composite service separation

152 D. Adach, W. Dąbrowski, A. Stasiak

4.4.	 Inbound adapters

Provider Adapters are used when the ESB needs to obtain information from
the system or to produce other services provided by the specific server. Division of
adapters into inbound and outbound ones, results from both — established the SOA
(division of components into small ones, performing a single function) and from
the fact that although the components implement similar functionality (providing
communication of the ESB — system) produce them in a different way.

Similar to Client Adapters, the Provider Adapters have to adjust to the system’s
communication pattern with which they communicate. Furthermore, they are in
charge of transcoding data (headers, contents, errors) and the communication model
into a model corresponding to a specific system as well.

However, the adapters of this kind as opposed to Client Adapters need to
implement error handling. In this case, only translation of the codes is not sufficient.
The component has to check the additional conditions, e.g., the system can return
empty list of results, which from the technical point of view would be the correct
execution of the request, however, further operation on the empty set may cause errors
inside the ESB. In such a case, the Provider Adapter should detect this situation and
return the information concerning business error to the ESB (empty list data).

The main difference between the adapter inbound and outbound type, is the place
which they occupy in order of execution of a specific workflow. Because the Client
Adapter is at the beginning of the flow, in case of sending incorrect data from the
system, it is enough for it to return information concerning error to the calling
demand system and thus it completes the process. The demand will be stopped at
the very beginning and no steps will be taken until the system sends the correct
message. As far as Provider Adapter is concerned, validation of data returned from
the system is insufficient. In this case, an error has to be recognized and appropriate
message about its appearance should be reported to the ESB so that, the controlling
component could take adequate steps.

In case the component only returned errors to the domain system and thus finished
operation, it would cause undesirable effects. For example, if such an error appeared
during launching new service, at the stage of physical activation of service, it could
appear that although service was not activated (because of an error), the customer would
be charged because charging process would run properly (even though the service
would not run correctly owing to the error). Moreover, we can imagine a situation when
the person activating some service was sending the demand several times, because of
lack of feedback whether the service had been activated or not, so the client would be
charged repeatedly although the service would not be activated.

Described components are the basic elements of the bus. Using them allows for
building very complex structures, responsible for realization of difficult functionalities.
However, in case of large system integrations (which usually expose many operations),

153Systems integration with integrating bus in SOA architecture using patterns

Fi
g.

 7
. A

da
pt

er
 o

ve
rlo

ad

154 D. Adach, W. Dąbrowski, A. Stasiak

the problem of adapters’ overload appears (Fig. 7). Similar problem occurred while
implementation of ESB for mentioned telco client. In the first stages, when adapter
was responsible for small amount of processes, storing all the operations in one
adapter was gratifying approach. However, while growing and increasing of the bus,
the problem of adapter overload has appeared which has caused negative effects.

In case of adapter responsible for more than 100 operations, it becomes bottleneck
of the whole system. Even the smallest breakdown of some part of adapter can cause
the downtime of the whole system. Analogical situation appears in case of adapter
enhancement — partly upgrading (of certain area) of adapter causes exclusion
of the whole adapter. In practice, it means that the whole system is temporary
unavailable for clients.

The next problem related to the overload of the adapter can be performance.
Such a situation can concern both, capacity of a single adapter (which can be forced
to serve few/tens operations per second) and data transfer (caused by many requests
to the adapter generated by other components). As a result, some of them may not
receive response in the assumed period. Such a situation may require the change
of a communication pattern (synchronous to asynchronous) or implementation of
queue mechanism.

Since the crucial part of majority is availability on the 99% level, one of the most
important activities to be taken is recognition and elimination of bottlenecks among
enterprise. The simplest way to achieve that seems to be adding new hardware in
order to increase performance. However, it generates additional costs. What is more,
eventually, the system reaches the critical point where hardware incensement is not
possible or efficient. Taking that into account, the decision was to formalize research
problem as: “ESB bus design optimization in the terms of resources”. The aim was
to resolve the problem without increasing hardware architecture.

As a result of research and measurement taken on Prove of Concept components
it was found that the best way to increase performance and use hardware resources
in more efficient way was to apply a process of canonization and aggregation. During
the research, two different approaches were taken into consideration — service
aggregation by:

—	 domain similarity;
—	 monitoring of ESB load, simulation of ESB traffic using queue systems

(future solution).
Since final decision belongs to stakeholders, it was decided to deploy first

solution, however, it needs to be noticed that the second approach could be even
more efficient and will be the subject of future research. Implementation was done
using TIBCO Active Matrix BusinessWorks software which, according to Forrester
Research, is one of the leaders in SOA/ESB tools [7].

As a result, logic was distracted for the major amount of components — canonical
and provider adapters. Canonical adapters are responsible for some business area

155Systems integration with integrating bus in SOA architecture using patterns

Fi
g.

 8
. C

an
on

iz
at

io
n

156 D. Adach, W. Dąbrowski, A. Stasiak

and they contain operations related to it. In case of the client’s implementation it was
decided to split adapter for CRM system to canonical adapters responsible for:

—	 operations related to the client object;
—	 operations related to the client’s account object;
—	 operations related to the financial transactions;
—	 operations related to the client’s interaction;
—	 operations related to the self-care interaction;
This process allows us to exclude some functional areas (Fig. 8) (containing

common features) and its aggregation. This division reflects real business flows.
When the operation generated in domain system is characteristic for only one

flow (is used by only one component), it is recommended to create private adapter
in the form of provider adapter (Fig. 9). When the operation, generated by adapter,
is used by more internal flows (it communicates with more than one components),
transforming into canonical adapter is suggested.

Fig. 9. Canonical and Provider Adapters

Canonization of flow and split of adapter into canonical adapters [3] causes many
advantages. The first one and the most visible is growth of clarity code and gaining
structure responding to the business model (certain flows reflect business areas).
Systems related to billing area will contact only dedicated adapters responsible for
these areas, without loading other components.

157Systems integration with integrating bus in SOA architecture using patterns

Decomposition allows also decreasing the risk connected with enhancement
implementation. In case of error caused by update, accident impacts considerably
smaller amount of flows. Similar situation takes place in case of failure — temporary
downtime of one component does not block the whole environment.

Apart from decrease in component load by reductions of invocations, division
allows us to increase capacity by assignment of different amount of resources.
In case of client environment, adapter served the processes which were performed
with different frequency. The rarest ones were executed one per a few days while
the most frequent — hundreds per hour. In order to imagine the canonization
advantages (Fig. 10), we can see exemplary amount of operations (from different
areas) executed per one hour.

Fig. 10. Approximate invocations/hour

A operation was invocated approximately 200 times per hour, B — 20 times,
C — 2 times, and D — about 500 times. In such a situation, the adapter had to
be run on the machine which resources allowing to cover needs of D area, while
the areas B and C used only few percentages of available resources. After split, like
it was shown in Fig. 8, it was possible to run the dedicated adapter for D area on
independent machine which has greater resources while the rest ones could be run
on machine, proportional to a number of processes occurrences.

5. Verification of solution

Measurement of architectural solution quality is a complex problem. During
justifications of quality, different measures can be used; both quality and quantity.
Among quantity solutions it is proposed to use the following measures:

—	 measure of a connection degree — understood as an average number of
combinations which are used to message exchange and control among
measured element and other elements of a system;

158 D. Adach, W. Dąbrowski, A. Stasiak

—	 measure of cohesion degree — understood as a level of internal element
consistent.

Using such defined measures shows that after canonization process, canonical
adapters are characterized even 10 times less level of connection degree depends
on granularity division. In some situations (dedicated adapter), connections degree
can be even 100 times less.

Using a measure of cohesion degree, understood as an X/Y ratio, where X are
connections responsible for realization of business logic from certain area, Y — are
all connections inside adapter, we receive similar results. From 10 to 100 times more
than in case of single adapter.

The proposed rule of canonical adapters’ creation, which consists of aggregation
of the elements, on the basis of belonging to the functional areas of the system
(X/Y measure), was verified in real environment. However, it is one of many
possibilities.

In further work, it is planned to improve the proposed rules by using queuing
systems to predict the use of adapters and their components. In this method,
the research team assumed that a rule of aggregation on the basis of belonging to
the functional areas will be defining only an “initial structure”. Following iteration will
made evolution of the structure until the point which will be optimal for “network
traffic” on the assumed characteristics.

Currently, the team is expanding the functions of dedicated monitor for collecting
statistics on calls (use) adapters, as well as their components and resources’ demands
(taking into account distinction between day and night).

This monitor will allow us to collect network traffic characteristics, which will
then be mapped in queuing systems. Subsequently, we plan to determine the adaptive
algorithm limits adapter’s structures with minimal resource demands.

6. Conclusions

As presented examples describe, when implementations of huge structure (more
than 40 components) or components serving many operations (approximately more
than 50) standard patterns are not enough efficient. At the mentioned or even higher
level of complexity, canonization process becomes necessary to avoid negative
results of components overloading. Furthermore, practical experience shows, that
canonizations is no longer just a way of improvement but natural consequence of
platform growth in service oriented companies.

Nevertheless, it needs to be noticed that implemented solution carries potential
threats. Process of canonization helps to eliminate bottlenecks, however, we can
assume that due to constant incensement of operations amount, eventually the new
bottlenecks will appear. Theirs elimination by constant canonization can create

159Systems integration with integrating bus in SOA architecture using patterns

distributed network of small components which will be impossible to manage.
Eventually, it will lead to exactly opposite results as it was assumed according to SOA
paradigms (single point of access). As a result, in such a situation it is recommended
to remodel or redesign architecture instead of applying the proposed solution.

Received November 7 2012, revised Fabruary 2013.

references

	 [1]	C omm server, www.comsvr.comm [online] [25.12.2011] http://www.commsvr.com/howitworks/
architecture/integration.aspx

	 [2]	E lliott, Michael [online] [26.12.2011] http://www.e-ditionsbyfry.com/olive/ode/sci/default.
aspx?href=sci%2f2011%2f05%2f01&pageno=19&entity=ar01902&view=enti

	 [3]	 B. Gold-Bernstein, W. Ruh, Enterprise integration: the essential guide to integration solutions,
2005.

	 [4]	 M. Ross, http://blogs.mulesoft.org [online] [27.12.2011] http://blogs.mulesoft.org/esb-or-not-
to-esb-revisited-part-1/

	 [5]	I bm. Ibm: developerworks [online] [25.12.2012] http://www.ibm.com/developerworks/webser-
vices/library/ws-esbscen3/

	 [6]	 Arsanjani, Kerrie Holley, dr. Ali, 100 soa questions: asked and answered, November 22, 2010.
	 [7]	 Forrester Research, The Forrester wave™: enterprise service bus, q2 2011, April 25, 2011, http://

www.progress.com/docs/campaign/analyst/2011_forrester-esb-wave.pdf

D. Adach, W. Dąbrowski, A. Stasiak

Integracja systemów przez integrującą magistralę usług w architekturze SOA
z użyciem wzorców projektowych

Streszczenie. W artykule opisano metodę określania wzorców struktur adapterów dla systemów wy-
korzystujących magistralę ESB. W zaproponowanej metodzie, poszukiwane podczas projektowania
adapterów wzorcowe struktury, są wyznaczane w wyniku odpowiedniego podziału adapterów dedy-
kowanych. Utworzone adaptery są silnie związane wewnętrznie, ponieważ po procesie kanonizacji
umożliwiają komunikację tylko z procesami tej samej domeny (obszaru funkcjonalnego). Dodatkowo
założono, że wyznaczone wzorce powinny prowadzić do eliminacji punktów krytycznych i wąskich
gardeł budowanego systemu, oraz wzrostu wydajności komunikacji i efektywności zarządzania zaso-
bami. Metodę przebadano w środowisku Tibco ESB, podczas prac nad rozwiązaniem dla operatora
telekomunikacyjnego.
Słowa kluczowe: integracja systemów (SI), integracja aplikacji korporacyjnych (EAI), korporacyjna
magistrala usług (ESB), wzorce projektowe dla korporacyjnej magistrali usług, kanoniczne adaptery
magistrali usług ESB, architektura zorientowana na usługi (SOA), zunifikowany język modelowania
(UML)

