PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

O falowej metodzie określania dynamicznych parametrów mechanicznych sprężysto-plastycznego materiału z liniowym wzmocnieniem za pomocą testu Taylora

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
On wave method of determining dynamic mechanical parameters of elastic-plastic material with linear strain hardening by means of Taylor test
Języki publikacji
PL
Abstrakty
PL
Opracowano prostą inżynierską metodę określania dynamicznych parametrów mechanicznych materiałów sprężysto-plastycznych z liniowym wzmocnieniem. Wykorzystano do tego celu test Taylora, tj. prostopadłe zderzenie długiego pręta z płaską sztywną płytą. W oparciu o ścisłe falowe rozwiązanie tego zagadnienia początkowo-brzegowego, wyprowadzono zamknięte algebraiczne wzory, określające prędkość propagacji fali plastycznej w pręcie i dynamiczną granicę plastyczności materiału pręta. Praca uzupełnia wiedzę o dynamicznych właściwościach materiałów, szczególnie metali, i ma walory aplikacyjne w inżynierii materiałowej.
EN
A new simple engineering method to determine dynamic mechanical parameters of elastic-plastic materials with linear strain hardening is presented in this paper. For this purpose, the Taylor's impact test, i.e., perpendicular striking of the long rod on a fl at rigid target has been used. On the base of the exact wave solution of the above-mentioned initial boundary value problem, the dynamic yield point of a material rod have been derived. This paper supplements knowledge on dynamical properties of metals and it has application values in materials engineering.
Rocznik
Strony
373--394
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Mechatroniki, Instytut Techniki Uzbrojenia, 00-908 Warszawa, ul. S. Kaliskiego 2
Bibliografia
  • [1] G. I. Taylor, The use of flat-ended projectiles for determining dynamic yield stress, I. Theoretical considerations, Proc. Roy. Soc., Series A, London, 194, 1948, 289.
  • [2] A. C. Whiffin, The use flat-ended projectiles for determining dynamic yield stress, II. Tests on various metallic materials, Proc. Roy. Soc., Series A, London, 194, 1948, 300.
  • [3] G. I. Barenblatt, A. I. Ishlinskii, On the impact of a viscoplastic bar on a rigid wall, Prikl. Math. Mekh., 26, 1962, 497.
  • [4] J. D. Cinnamon, S. E. Jones, J. C. Foster Jr, P. P. Gillis, An analysis of early time deformation rate and stress in the Taylor impact test. Mechanical Behavior of Materials, VI. Proc. of the Sixth Int. Materials Conf., eds. M. Jano and T. Inouc, Kyoto, Japan, vol. 1, July 1991, 337.
  • [5] N. Cristescu, Dynamic plasticity, North-Holland, Amsterdam, 1967.
  • [6] J. C. Foster Jr., P. J. Maudlin, S. E. Jones, On the Taylor test, Part I: A continuum analysis of plastic wave propagation, Proc of the 1995 APS Topical Conf.: An Shock Compression of Condensed Matter, Seattle, Washington, August 1995, 291.
  • [7] J. B. Hawkyard, D. Easoton, W. Johnson, The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the “mushrooms” of flat-ended projectiles, Int. J. Mech. Sci., 10, 1968, 929.
  • [8] J. B. Hawkyard, A theory for the mushrooming of flat-ended projectiles impinging on a fiat rigid anvil, using energy considerations, Int. J. Mech. Sci., 11, 1969, 313.
  • [9] I. M. Hutchings, Estimation of yield stress in polymers at high strain-rates using G. I. Taylors impact technique, J. Mech. Phys. Solids, 26, 1979, 289.
  • [10] G. R. Johnson, T. J. Holmquist, Evaluation of cylinder-impact test data for constitutive model constants, J. Appl. Phys., 64, 1988, 3901.
  • [11] S. E. Jones, P. P. Gillis, J. C. Foster Jr, L. X. Wilson, A one-dimensional two-phase flow model for Taylor impact specimens, J. Engr. Mat’ls. Tech., Trans. ASME, 113, 1991, 228.
  • [12] S. E. Jones, P. P. Gillis, J. C. Foster Jr, On the equation of motion of the undeformed section of a Taylor impact specimen, J. Appl. Phys., 6l, 1987, 499.
  • [13] S. E. Jones, P. J. Maudlin, P. P. Gillis, J. C. Foster Jr, An analytical interpretation of high strain rate materials behavior during early time plastic deformation in the Taylor impact test, Computers in Engineering, ed. G. A. Gabriele, vol. 2, ASME, New York, 1992, 173.
  • [14] E. H. Lee, S. J. Tupper, Analysis of plastic deformation in a steel cylinder striking a rigid target, J. Appl. Mech., Trans. ASME, 21, 1954, 63.
  • [15] P. J. Maudlin, J. C. Foster Jr, S. E. Jones, An engineering analysis of plastic wave propagation in the Taylor test, Int. J. Impact Engng, 19, 1997, 95.
  • [16] P. K. Maudlin, J. C. Foster Jr, S. E. Jones, On the Taylor test, Part III: A continuum mechanics code analysis of plastic wave propagation, Los Alamos National Laboratory report LA-12836-MS, November 1994.
  • [17] P. J. Maudlin, R. F. Davidson, R. J. Henninger, Implementation and assessment of the mechanical-threshold-stress model using the EPIC2 and PINON computer codes, Los Alamos National Laboratory report LA-11895-MS, September 1990.
  • [18] M. A. Meyers, Dynamic behaviour of materials, John Wiley an Sons, INC, New York-Chichester-Brisbane-Toronto-Singapoure, 1994.
  • [19] T. C. T. Ting, Impact of a nonlinear viscoplastic rod on a rigid wall, J. Appl. Mech. Trans. ASME, 33, 1966, 505.
  • [20] L. L. Wilson, J. W. House, M. E. Nixon, Time resolved deformation from the cylinder impact test AFATL-TR-89-76, November 1989.
  • [21] E. Włodarczyk et al., Estimation of dynamic yield stress of shell steels by means of the Taylor impact test (in Polish), Bull, Acad., 1, 56, 2007, 113.
  • [22] S. E. Jones et al., An engineering analysis of plastic wave propagation in the Taylor test, Int. J. Engng, 19, 2, 1997, 95-106.
  • [23] Kh. A. Rakhmatulin, Yu. A. Demyanow, Strength under intense short-tern loadings (in Russian), Gostizdat, Moskva, 1961.
  • [24] M. Krzyżański, Partial differential equations of the second order, vol. II (in Polish), PWN, Warsaw, 1962.
  • [25] S. Kaliski, Cz. Rymarz, K. Sobczyk, E. Włodarczyk, Waves, PWN, Warsaw, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1992.
  • [26] P. G. Shewmon (ed.), V. F. Zackay, Response of metals to high velocity deformation, Interscience Publishers, New York-London, 1961.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0007-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.