PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generacja fal terahercowych z zastosowaniem laserów półprzewodnikowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Generation of terahertz waves with semiconductor lasers
Języki publikacji
PL
Abstrakty
PL
Pasmo częstotliwości terahercowych w widmie promieniowania elektromagnetycznego to ostatni skrawek tego widma dotychczas słabo wykorzystywany w technice. Powodem tego stanu rzeczy są trudności w osiągnięciu fal o częstotliwości terahercowej. Tymczasem technika ta znajduje coraz szersze możliwości aplikacyjne. W artykule omówiono metody generacji fal terahercowych oparte na wykorzystaniu promieniowania emitowanego przez lasery - szczególnie lasery półprzewodnikowe. Znaczną część artykułu poświęcono opisowi zjawisk leżących u podstaw tej techniki z położeniem nacisku na zjawisko mieszania częstotliwości. Szczególną uwagę zwrócono na potencjał tkwiący w kwantowych laserach kaskadowych i laserach dwufalowych, które uważane są za szczególnie perspektywiczne z punktu widzenia budowy generatorów promieniowania terahercowego o znaczącej mocy wyjściowej.
EN
The terahertz frequency band is the last shred of the electromagnetic radiation spectrum that had been left al most unused in practical applications. The situation has been caused by difficulties encountered when trying to generate terahertz wavelengths of meaningful power. However, this technique finds ever increasing applications and has aroused a great interest in its development. In the paper we describe basic phenomena leading to generation of terahertz signals by optical methods. Photo-mixing of laser beams is treated more in detail due to variety of possibilities offered by the method itself and semiconductor lasers in particular. Quantum Cascade Lasers and two-colour external cavity lasers deserve special attention as promising sources of high output power terahertz signals and the state of the art in this field has been therefore enlightened more thoroughly.
Rocznik
Strony
132--143
Opis fizyczny
Bibliogr. 56 poz., rys.
Twórcy
  • Instytut Technologii Elektronowej, Warszawa
Bibliografia
  • [1] Wallace V. P.: Terahertz methods show promise for breast cancer, Laser Focus World, 42, no 6, 2006, 83-85.
  • [2] Deninger A., Renner T.: Near-IR lasers may close the terahertz gap, Laser Focus World, 44, no 1, 2008, 111-114.
  • [3] Schulkin B., Zhang X. C.: Time-domain spectrometers expand toward new horizons, Laser Focus World, 42, no 11, 2006, 89-93.
  • [4] Carts-Powell Y.: Terahertz imaging brings new capabilities to QC applications, Laser Focus World, 41, no 7, 2005, 109-112.
  • [5] Dhillon S. S., Sirtori C., Alton J., Barbieri S., De Rossi A., Beere H. E., Ritchie D. A.: Terahertz transfer onto a telecom optical carrier, Nature Photonics, 1, 2007, 411-415.
  • [6] Capasso F., Paiella, Martini R, Colombelli R., Gmachl C., Myers T. L., Taubman M. S., Wiliams R. M., Bethea C. G., Unterrainer K., Hwang H. Y, Sivco D. L., Choo A. Y., Sergent A. M., Liu H. C., Whittaker A: Quantum Cascade Lasers: Ultrahigh_Speed Operation, Optical Wireless Communication, Narrow Linewidth, and Far-Infrared Emission, IEEE J. Quantum Electron, 38, no 6, 2002, 511-532.
  • [7] Stevenson R: III-Vs squeeze the terahertz gap, Compound Semicond., 14, no 2, 2008, 17-19.
  • [8] Kumar S., Wiliams B. S., Hu Q., Reno J. L.: 1.9 THz quantumcascade lasers with one-well injector, Appl. Phys. Lett, 88, 2006, 121-123.
  • [9] Deal W. R., Mei X. B., Radisic V., Yoshida W., Liu P. H., Uyeda J., Barsky M., Gaier T., Fung A., Samoska L., Lai R.: Demonstration of a 270 GHz MMIC Amplifier Using 35 nm InP HEMT Technology, IEEE Microwave and Wireless Comp. Lett., 17(5), 2007, 391-393.
  • [10] Bolognesi C.: Antimonides chase terahertz target, Compound Semicond., 14, no 7, 2008, 21-23.
  • [11] Auston D. H.,Cheung K. P., Valdemanis J. A., Kleinnman D. A.: Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media, Phys Rev. Lett., 53(16), 1984,1555-1558.
  • [12] Deninger A., Renner T.: Terahertz generation benefits from laser know-how, Optics and Laser Europe, June 2007, 40-42.
  • [13] Brown E. R: Laser advances drive THz photoconductive source technology, Laser Focus World, 44, no 6, 2008, 94-97.
  • [14] Kohler R., Tredicucci A., Beltram F., Beere H. E., Lintield E. H., Davies A. G., Ritchie D. A., Iotti R. C., Rossi F.: Terahertz semiconductor-heterostructure laser, Nature, 417, 2002, 156-159.
  • [15] Rochat M., Ajili L., Willenberg H., Faist J., Beere H., Davies G., Lintield E., Ritchie D.: Low-threshold terahertz quantum-cascade lasers, Appl. Phys. Lett., 81, 2002, 1381-1383.
  • [16] Scalari G., Ajjili L., Faist J., Beere H., Lintield E., Richie D., Davies G.: Far-intrared (λ ≈ 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90K, Appl. Phys. Lett, 82(19), 2003, 3165-3167.
  • [17] Wiliams B. S., Callebaut H., Kumar S., Hu Q., Reno J. L.: 3.4 THz quantum cascade laser based on longitudinal-opticalphonon seattering tor depopulation, Appl. Phys. Lett, 82(7), 2003, 1015-1017.
  • [18] Williams B. S., Kumar S., Hu Q., Reno J. L.: Resonant-photon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm), Electron. Lett., 40, no 7, 1-st April 2004.
  • [19] Walther Ch., Scalari G., Faist J.: Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz, Appl. Phys. Lett., 89, 2006, 231121.
  • [20] Walther Ch., Fisher M., Scalari G., Terazzi R., Hoyler N., Faist J.: Quantum cascade lasers operating from 1.2 to 1.6 THz, Appl. Phys. Lett., 91, 2007, 131122.
  • [21] Luo H., Latramboise, Wasilewski Z. R., Aers., Liu H. C.: Terahertz quantum-cascade lasers based on a three-well active module, Appl. Phys. Lett., 90, 2007, 041112.
  • [22] Freeman J. R., Marshall O., Beere H. E., Ritchie D. A.: Improved wall plug efficiency of a 1,9 THz quantum cascade laser by an extended design approach, Appl. Phys. Lett., 93, 2008, 191119.
  • [23] Belkin M. A., Fan J. A., Hormoz S., Capasso F., Khanna S. P., Lachab M., Davies A. G., Lintield E. H.: Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178K, Optics Express 3242, 16, no 5.
  • [24] Brunner F. D. J., Schneider A., Günter P.: Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti; sapphire laser, Appl. Phys. Lett., 94, 2009, 061119.
  • [25] Yeh K. L., Hoffman M. C., Hebling J., Nelson K. A.: Generation of 10 μJ ultrashort terahertz pulses by optical rectification, Appl. Phys. Lett., 90, 2007,171121.
  • [26] Lyakh A., Zory P., Wasserman D., Shu G., Gmahl C., D'Souza M., Botez D., Bour D.: Narrow stripe-width, low-ridge high power quantum cascade lasers, Appl. Phys. Lett., 90, 2007, 141107.
  • [27] Jiang Y., Ding Y. J.: Efficient terahertz generation from two collineary propagating CO2 laser pulses, Appl. Phys. Lett., 91, 2007, 091108.
  • [28] Belkin M. A., Capasso F., Xie F., Belyanin A., Fisher M., Wittman A., Faist J.: Room temperature terahertz quantum cascade laser source based on intracavity difference -frequency generation, Appl. Phys. Lett., 92, 2008, 201101.
  • [29] Slivken S., Bai Y., Darvish S. R., Razeghi M.: Powerful QCLs eye remote sensing, Comp. Semicond., 14, no 9, 2008, 21-23.
  • [30] Bai Y., Darvish S. R., Slivken S., Zhang W., Evans A., Nguyen J., Razeghi.: Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power, Appl. Phys. Lett., 92, 2008, 101105.
  • [31] Faist J.: Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits, Appl. Phys. Lett., 90, 2007, 253512.
  • [32] Faist J.: Recent advances extend spectral output of QC lasers, Laser Focus World, 44, no 4, 2008, 71-74.
  • [33] Stevenson R.: QCLs: mass-market devices or just interesting physics? Compound Semicond., 10, no 8, 2004, 28-30.
  • [34] Fan J. A., Belkin M. A., Capasso F.: Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression. Appl. Phys. Lett., 92, 2008, 031106.
  • [35] Mueller E. R.: Terahertz Radiation Sources tor Imaging and Sensing Applications. Photonics Spectra, Nov. 2006, 60-69.
  • [36] Mueller E. R.: Terahertz radiation: applications and sources. The Industrial Physicist, http://www.aip.org/tip/lNPHFA/vol-9/iss-4/p27.html.
  • [37] Chimot N., Mangeney J., Mounaix P., Tondusson M., Blary K., Lampin J. F.: Terahertz radiation generated and detected by Br+ -irradiated In0,53Ga0,47As photoconductive antenna excited at 800 nm wavelength. Appl. Phys. Lett., 89, 2006, 083519.
  • [38] Rice A., Jin Y., Ma X. F., Zhang X. C., Bliss D., Larkin J., Alexander M.: Terahertz optical rectification from <110> zinc-blende crystals. Appl. Phys. Lett., 64, 1994, 13241326.
  • [39] Wynne K., Carey J. J.: An integrated description of terahertz generation through optical rectification, charge transfer, and current surge. Optics Commun., 256, 2005, 400-413.
  • [40] Carts-Powell Y.: Terahertz imaging brings new capabilities to QC applications. Laser Focus World, July 2005, 109-111.
  • [41] Kawase K., Sato M., Taniuchi T., Ito H.: Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler. Appl. Phys. Lett., 68 (18), 1996, 2483-2485.
  • [42] Brown E. R., McIntosh K. A., Nichols K. B., Dennis L.: Photomixing up to 3.8 THz in low temperature-grown GaAs. Appl. Phys. Lett., 66 (3), 1995, 285-287.
  • [43] Bjarnason J. E., Chan T. L/J., Lee A W. M., Brown E. R., Driscoll D. C., Hanson M., Gossard A C., Muller R. E., ErAs: GaAs photomixer with two-decade tunability and 12 μW peak output power. Appl. Phys. Lett., 85, no 18, 2004, 3983-3985.
  • [44] McIntosh K. A., Brown E. R., Nichols K. B., McMahon O. B., Di-Natale W. F., Lyszczarz T. M.: Terahertz photomixing with diode lasers in low-temperature-grown GaAs. Appl. Phys. Lett., 67, no 26, 1995, 3844-3846.
  • [45] Lyakh A., Pflugl Ch., Diehl L., Wang O. J., Capasso F., Wang X. J., Fan J. Y., Tanbun-Ek T., Maulini R., Tsekoun A., Go R., Patel C. K. N.: 1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm. Appl. Phys. Lett., 92, 2008, 111110.
  • [46] Pflügl Ch., Diehl L., Wang O. J., Capasso F., Lyakh A., Maulini R., Tsekoun A., Kumar C., Patel N.: High-power continuous-wave quantum-cascade lasers at room temperature. SPIE Newsroom, 10.1117/2.1200811.1408.
  • [47] Bismuto A., Gresch T., Bächle, Faist J.: Large cavity quantum cascade lasers with InP interstacks. Appl. Phys. Lett., 93, 2008, 231104.
  • [48] McIntosh K. A., Brown E. R., Nichols K. B., McMahon O. B., DiNatale W. F., Lyszczarz T. M.: Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers. Appl. Phys. Lett., 69, 1996, 3632-3634.
  • [49] Friedrich C. S., Brenner C., Hoffmann S., Schmitz A., Mayorga I. C., Klehr A., Erbert G., Hofmann M. R.: New Two-Color Laser Concepts for THz Generation. IEEEj Sel. Topics Quantum Electron., 14, no 2, 2008, 270-276.
  • [50] Kowalczyk E., Szyjer M., Franc K., Mraziewicz B.: Double-frequency external cavity laser with a singular optical semiconductor amplifier. Opto-Electran. Rev. (DOI 10.2478/s11772-009-0007-x).
  • [51] Belkin M. A., Capasso F., Belyanin A., Sivco D. L., Choo A. Y., Oakley D. C., Vineis Ch. J., Turner G. W.: Terahertz quantumcascade-laser source based on intracavity difference-frequency generation. Nature Photonics, 1, 2007, 288-292.
  • [52] Wysocki G., Lewiocki E., Curl R. F., Tittel F. K., Diehl L., Capasso F., Trocoli M., Hofler G., Bour D., Corzine S., Maulini R., Giovannini M., Faist J., Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopy and chemical sensing. Appl. Phys. B., B 92, (2008), 305 311.
  • [53] Palmer D. J.: QCLs make a difference in room-temperature terahertz. Laser Focus World, 44, no 7, 2008, 35-37.
  • [54] Hagberg M., Eriksson N., Larsson A.: Investigation of High_Efficiency Surface Emitting Lasers with Blazed Grating Outcouplers. IEEE J. Quantum Electran., 32(9), 1996, 1596-1605.
  • [55] Pflügl Ch., Belkin M. A., Wang Q. J., Geiser M., Belyanin A., Fisher M., Wittman A., Faist J., Capasso F.: Surface-emitting terahertz quantum cascade laser source based on intracavity difference-frequency generation. Appl. Phys. Lett., 93, 2008, 161110.
  • [56] Diode Lasers for High-Resolution CW Terahertz Generation, www.toptica.com.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0005-0057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.