PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of microstructure and phase transformations of CMnAlSi TRIP steel

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose was to obtain the TRIP-type microstructure in the CMnAlSi steel. Heat treatment consisted of the partial austenitization at 900*C/60s and continuous cooling with rates: 0.5-40*C/s, was examined. Also the effect of Al and Si on Ac1 and Ac3 temperatures, and the volume fractions of austenite in CMnSi, CmnAl and CMnAlSi steels was investigated. Design/methodology/approach: The effect of alloying elements on Ac1 and Ac3 temperatures was investigated using Thermo-calc program. The influence of cooling rates on phase transformations and microstructures of samples austenitized at 900*C/60s was examined using dilatometer, light optical microscopy and scanning electron microscopy. X-ray diffraction technique was used to calculate the amount of retained austenite. Quantitative analyses of phases were done using Image pro Plus 3.0 program. The mechanical properties and Vickers hardness (HV10) measurements were also investigated. Findings: The TRIP-aided microstructure consisted of ferrite matrix, bainitic ferrite and metastable retained austenite can be obtained for the CMnAlSi steel through intercritical annealing at 900*C/60s and continuous cooling with the rate 20*C/s to the R.T. Isothermal holding at bainitic temperature range (600-400*C) during cooling is not necessary, because of the Al and Si additions to the steel. Practical implications: The CMn steel with addition of 1% Al and Si is well-suited for production of TRIP steel sheets in a large range of temperatures: 800-900*C. The advisable cooling rates are in the range from 10 to 40*C/s. Originality/value: In the TRIP steels the amount of residual austenite in structure at the R. T. strongly depends on the heat treatment parameters such as annealing temperature, cooling rates and amounts of added alloying elements. It is very important to determine the optimal annealing parameters for each TRIP steel grade to obtain the steel with the best mechanical properties and microstructure.
Rocznik
Strony
646--653
Opis fizyczny
Bibliogr. 20 poz., wykr., tab., il.
Twórcy
autor
autor
  • Institute of Materials Engineering, Faculty of Materials Processing Technology and Applied Physics, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland, blanka@mim.pcz.czest.pl
Bibliografia
  • [1] J. Adamczyk, Engineering of Metallic Materials, Silesian University of Technology Press, Gliwice, 2004, (in Polish).
  • [2] J. Adamczyk, Development of the microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 9-20.
  • [3] J. Adamczyk, A. Grajcar, Rolling of multiphase sheets of the structural steel with Nb and Ti microadditions using the thermomechanical treatment, Proceedings of the 12th Scientific International Conference, AMME'2003, Gliwice-Zakopane, 2003, 9-14.
  • [4] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets, Journal of Materials processing Technology 162-163 (2005) 23-27.
  • [5] J. Adamczyk, A. Grajcar, Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 375-378.
  • [6] Z. Bojarski, E. Łągiewka, Roentgenographical structural analysis, Katowice, 1995, (in Polish).
  • [7] K. Eberle, P. Cantinieaux, P. Harlet, New thermomechanical strategies for the production of high strength low alloyed multiphase steel showing a transformation induced plasticity (TRIP) effect, Steel Research 70/6 1999 233-238.
  • [8] I. A. El-Sesy, Z. M. El-Baradie, Influence carbon and/or iron carbide on the structure and properties of dual-phase steels, Materials Letters 57 (2002) 580-585.
  • [9] V. Flaxa, J. Shaw, Material application in ULSAB-AVC, Steel Grips 1/4 (2003) 255-261.
  • [10] B. Gajda, A. K. Lis, Thermal processing of CMnAlSi steel at (α+γ) temperature range, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 355-358.
  • [11] B. Gajda, A. K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [12] J. E. Garcia-Gonzalez, C. I. Garcia, M. Hua, A. J. De Ardo, Fundamental study of the austenite formation and decomposition in high strength low-Si, Al aided Nb-Mo TRIP steels, Proceedings of a Symposium Sponsored by Materials Science and Technology, 2005, 3-14.
  • [13] S. M. K. Hosseini, A. Zarei-Hanzaki, M. J. Yazdan Panah, S. Yue, ANN model for prediction of the effects of composition and process parameters on tensile strength and percent elongation of Si-Mn TRIP steels, Materials Science and Engineering A374 (2004) 122-128.
  • [14] D. Jandova, Influence of hot and warm deformation on austenite decomposition, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 375-378.
  • [15] A. K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Proceedings of the 11th International Scientific Conference, CAMS'2005, Gliwice-Zakopane, 2005, (CD-ROM).
  • [16] A. K. Lis, B. Gajda, A. J. De Ardo, New Steel Chemistry Design for TRIP and Dual-Phase Structures, Proceedings of a Symposium Sponsored by Materials Science and Technology, 2005, 47-52.
  • [17] J. Mahieu, D. Van Dooren, L. Barbe, B. C. De Cooman, Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification, Steel Research 73 (2002) 267-273.
  • [18] A. Pichler, S. Traint, G. Arnolder, P. Stiaszny, M. Blamschein, High strength hot-dip galvanized steel grades: A critical comparison of alloy design, line configuration and properties, Iron and Steelmaker 30/6 (2003) 21-31.
  • [19] K. Sugimoto, T. Muramatsu, T. Hojo, S. Hashimoto, Ultra High-Strength C-Si-Mn-Nb-Mo TRIP-Aided Sheet Steels, Materials Science and Technology 2 (2005) 15-24.
  • [20] Z. C. Wang, S. J. Kim, C. G. Lee, T. H. Lee, Bake-hardening behavior of cold-rolled CMnSi and CMnSiCu TRIP-aided steel sheets, Journal of Materials Processing Technology 151 (2004) 141-145.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0004-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.