PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applicability valuation for evaluation of surface deflection in automotive outer panels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Upon unloading in a forming process there is elastic recovery, which is the release of the elastic strains and the redistribution of the residual stresses through the thickness direction, thus producing surface deflection. It causes changes in shape and dimensions that can create major problem in the external appearance of outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Many factors could affect surface deflection in the process, such as material variations in mechanical properties, sheet thickness, tool geometry, processing parameters and lubricant condition. Design/methodology/approach: Numerical simulation of process was performed by the use of finite element method, paying attention particularly to the thickness distribution and surface deflection of the drawn outer panel and the outline flange during forming. Simulation procedures of automotive outer panel as large size shape are as follows; 1) Acquisition of drawing parts 2) Laser scanning for generating CAD model 3) CAD model generation 4) Simulation model operation 5) Simulation execution and analyses of simulation results. Findings: The development of automation in stamping and assembly processes of automobile manufacture will require an excellent surface quality of formed panels and also their accurate dimensions. Practical implications: The use of high strength steel sheets in the manufacturing of automobile outer panels has increased in the automotive industry over the years because of its lightweight and fuel-efficient improvement. But one of the major concerns of stamping is surface deflection in the formed outer panels. Hence, to be cost effective, accurate prediction must be made of its formability. The automotive industry places rigid constraints on final shape and dimensional tolerances as well as external appearance quality of outer panels. The numerical simulation makes it possible to design and optimize the total process to a level, which can't be reached by traditional theoretical and experimental methods. Originality/value: Computer simulations can be used to determine the influence from variations in material properties and process parameters.
Rocznik
Strony
558--564
Opis fizyczny
Bibliogr. 13 poz., wykr., il.
Twórcy
autor
autor
autor
autor
autor
  • Gyeongbuk Hybrid Technology Institute, 300 Sampung-dong, Gyeongsan-si, Gyeongbuk 712-210, Korea, pdh@ghi.re.kr
Bibliografia
  • [1] H. S. Kim, M. Koc, J. Ni, A. Ghosh, Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys-Validation through Comparisons with Experiments and Determination of a Failure Criterion, Journal of Manufacturing Science and Engineering 128 (2006) 613-621.
  • [2] F. Paulsen,T. Welo, Applications of Numerical Simulation in the Bending of Aluminum Alloy Profiles, Journal of Materials Processing Technology 58 (1996) 274-285.
  • [3] M. Kawka, A. Makinouchi, Shell Element Formulation in the Static Explicit FEM Code for the Simulation of Sheet Stamping, Journal of Materials Processing Technology 50 (1995) 105-115.
  • [4] P. Ducroco, E. Markiewicz, P. Drazetic, and P. Guyon, An Inverse Approach to Determine the Constitutive Model Parameters Using Drop Tests and Numerical Tools, International Journal of Impact Engineering 21 (1998) 433-449.
  • [5] N. Song, D. Qian, J. Cao, Effective Models for Prediction of Springback in Flanging, Transactions of the ASME 123 (2001) 456-461.
  • [6] M. J. Finn, P. C. Galbraith, L. Wu, J. O. Hallquist, L. Lim, T. L. Lin, Use of a Coupled Explicit-Implicit Solver for Calculating Springback in Automotive Body Panels, Journal of Materials Processing Technology 50 (1995) 395-409.
  • [7] A. Makinouchi, M. Kawka, Press Simulation in Sheet Metal Forming, Journal of Materials Processing Technology 46 (1994) 291-307.
  • [8] A. Makinouchi, Sheet Metal Forming Simulation in Industry, Journal of Materials Processing Technology 60 (1996) 19-26.
  • [9] L. Liu, T. Sawada, M. Sakamoto, Evaluation of the Surface Deflection in Pressed Automobile Panels by an Optical Reflection Method, Journal of Materials Processing Technology 103 (2000) 280-287.
  • [10] S. K. Esche, S. Khamitkar, G. L. Kinzel, T. Altan, Process and Die Design for Multi-Step Forming of Round Parts from Sheet Metal, Journal of Materials Processing Technology 59 (1996) 24-33.
  • [11] M. Kawka, L. Olejnik, A. Rosochowski, H. Sunaga, A. Makinouchi, Simulation of Wrinkling in Sheet Metal Forming, Journal of Materials Processing Technology 109 (2001) 283-289.
  • [12] H. Sunaga, A. Makinouchi, Sheet Metal Forming Simulation System for Predicting Failure in Stamping Products, RIKEN review 14 (1996) 47-48.
  • [13] H. S. Kim, M. Koc, J. Ni, Determination of Proper Temperature Distribution for Warm Forming of Aluminum Sheet Materials, Journal of Manufacturing Science and Engineering 128 (2006) 622-633.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0004-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.