Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: of this paper is the effect of the soft annealing of initial microstructure of the 6Mn16 steel on the kinetics of the austenite formation during next intercritical annealing. Design/methodology/approach: Analytical TEM point analysis with EDAX system attached to Philips CM20 was used to evaluate the concentration of Mn, Ni and Cr in the microstructure constituents of the multiphase steel and mainly Bainite-Martensite islands. Findings: The increase in soft annealing time from 1-60 hours at 625*C increases Mn partitioning between ferrite and cementite and new formed austenite and decreases the rate of the austenite formation during next intercritical annealing in the (α+γ) temperature range at 700 and 750*C. The general equations for carbide dissolution and austenite formation in intercritical temperature range were established. Research limitations/implications: The final multiphase microstructure can be optimised by changing the time / temperature parameters of the intercritical heating in the (α+γ) temperature range. Originality/value: The knowledge of partitioning of alloying elements mainly Mn during soft annealing and intercritical heating is very important to optimise the processing technology of intercritical annealing for a given amount of the austenite.
Wydawca
Rocznik
Tom
Strony
83--90
Opis fizyczny
Bibliogr. 19 poz.,
Twórcy
autor
autor
- Institute of Materials Engineering, Częstochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland, lis@mim.pcz.czest.pl
Bibliografia
- [1] A. K. Lis, J. Lis, Effect of hot deformation and cooling rate on phase transformations in low carbon HN5MVNb bainitic steel, Trans Tech Publications, Materials Science Forum 539-543 (2007) 4620-4625.
- [2] J. Lis, A. K. Lis, C. Kolan, Processing and properties of C-Mn steel with dual-phase microstructure, Journal of Materials Processing Technology 162-163 (2005) 350-357.
- [3] B. Gajda, A. K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
- [4] N. Wolańska, A. K. Lis, J. Lis, Investigation of C-Mn-B steel after hot deformation, Archives of Materials Science and Engineering 28/2 (2007) 119-125.
- [5] A. K. Lis, B. Gajda, J. DeArdo, New steel chemistry design for TRIP and Dual Phase structures, Materials Science and Technology 2005, Pittsburgh, USA.
- [6] S. K. Chang, J. H. Kwak, Effect of Manganese on Aging in Low Carbon Sheet Steels, Iron And Steel Institute Of Japan International 37 (1997) 74-79.
- [7] K. Eberle, P. Cantinieaux, P. Harlet, New thermomechanical strategies for the production of high strength low alloyed multiphase steel showing a TRIP effect, Steel Research 70/6 (1999) 233-238.
- [8] G. Michta, J. Pietrzyk, W. Osuch, A. Kruk, Stability of retained austenite at low temperature in low carbon cooper bearing steels with TRIP assisted effect, Materials Engineering 25/3 (2003) 339-342 (in Polish).
- [9] G. Michta, W. Osuch, A. Kruk, Testing of isothermal tranformation of undercooled austenite within 380-650*C temperature range in low carbon steels with containing manganese and silicon, Metallurgist-Information Metallurgical 4 (2003) 171-176 (in Polish).
- [10] S. Sun, M. Pugh, Manganese partitioning in dual phase steel during annealing, Materials Science and Engineering A276 (2000) 187-174.
- [11] J. Lis, J. Morgiel, A. Lis, The effect of Mn partitioning in Fe-Mn-Si alloy investigated with STEM-EDS techniques, Materials Chemistry and Physics 81 (2003) 466-468.
- [12] J. Lis, Microsegregation of manganese in low carbon steels during intercritical heat treatments, Publisher WIPM and FS, Częstochowa University of Technology, Seria: Materials Engineering, No 7, Częstochowa, 2005 (in Polish).
- [13] Z. Kędzierski, Phase transformations in condensed systems, Academia Publisher AGH, Kraków, 2003 (in Polish).
- [14] G. Guy, Introduction to Materials Science, PWN, Warszawa, 1970 (in Polish).
- [15] J. Pietrzyk, G. Michta, A. Kruk, Kinetics of bainite transformation of austenite formed after annealing in temperature range A1-A3 in steel 0,2%C, 1,5%Mn, 1,5% Si, Metallurgist-Information Metallurgical 5 (1997) 218-222.
- [16] R. Zenker, Martensitarten und Martensitmorphologie in Eisenlegierungen, Neue Hütte 18/4 (1973) 216-223.
- [17] N. Pussegoda, W. R. Tyson, P. Wycliffe, G. R. Purdy, Metallurgical Transactions 15A (1984) 1499-1507.
- [18] J. Agren, Kinetics of carbide dissolution, Scandinavian Journal of Metallurgy 19 (1990) 2-8.
- [19] J. Lis, A. Lis, Kinetics of the austenite formation during intercritical annealing, Journal of Achievements in Materials and Manufacturing Engineering (2008) (in Print).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0003-0061