PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, properties and hot deformability of the new maraging steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The effects of relevant metallurgical factors on the structure, fracture mode and properties of the high cobalt and cobalt free maraging steel has been studied. The aim was to better understand structure-property relations and enhance mechanical properties of the steels. To provide data needed for production and manufacturing technology, the high temperature deformability using physical simulation method was used. Design/methodology/approach: To study structure-property relation, broad range of the experimental techniques was used: quantitative metallography, X-ray diffraction phase analysis, transmission electron microscopy and SEM fractography. The flow properties in the range of hot working processes were determined by physical simulation approach, using Gleeble 3800 system. Findings: The cobalt-free maraging steel proved to be a valuable structural steel. At much higher fracture toughness it had only about 100 MPa lower yield stress, compared to that of high cobalt steel. Fracture surface morphologies were highly dependent on the steel grade and type of the mechanical test. The hot stress-strain characteristics were established for cobalt free maraging steel and compared to that of a stainless steel. Research limitations/implications: To fully evaluate potential field of applications, deeper comparative studies of the high cobalt and cobalt-free maraging steels are needed, particularly fracture modes and service properties of some parts. Practical implications: Very high mechanical properties and fracture toughness values obtained for the steels studied, make them suitable for advanced structural applications. The studies on the hot deformation behaviour of the steels are of practical value for the hot working process development. Originality/value: Detailed evaluation of the metallurgical purity, microstructure and fracture modes, allowed for better understanding of the microstructure-property relationships in selected high strength steels. The results obtained are of practical value for the development, production and manufacture of the high strength maraging steels with improved properties.
Rocznik
Strony
31--38
Opis fizyczny
Bibliogr. 32 poz., il., tab., wykr.
Twórcy
autor
autor
  • Institute for Ferrous Metallurgy, ul. K. Miarki 12-14, 44-100 Gliwice, Poland, spawlak@imz.pl
Bibliografia
  • [1] Standard SAE AMS 6514 C, 1992, „Steel maraging, bars, forging, tubing and rings 18.5 Ni-9.0 Co-0.65 Ti-0.10 Al Consumable Electrode Vacuum Melted, Annealed”.
  • [2] S. J. Pawlak, Correlation between ductility and the second phase particles parameters in vacuum melted maraging steels, Proceedings of the International Symposium on Metallography, Strbske Pleso, Slovakia 3 (1986) 26-30.
  • [3] Z. Kędzierski, A. Zielińska-Lipiec, Charpy toughness anisotropy of maraging steels, Hutnik 54/ 6 (1987) 182-186 (in Polish).
  • [4] H. Everson, Advanced engineering steels for aerospace, Materials World, 1994, 461-462.
  • [5] W. M. Garrison Jr., M. A. Rhoads, An evaluation of an ultra-high strength steel strengthened by alloy carbide and intermetallic precipitates, Transactions of the Indian Institute of Metals 49/3 (1996) 151-162.
  • [6] Th. J. McCaffrey, Combined strength and toughness characterize new aircraft alloy, Advanced Materials and Processes 142/3 (1992) 47-50.
  • [7] S. J. Pawlak, Microstructure and properties of vacuum melted high cobalt and cobalt-free maraging steels, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 31-34.
  • [8] M. Ahmed, I. Salam, F. H. Hasmii, A. Q. Khan, Influence of banded structure on the mechanical properties of a high-strength maraging steels, Journal of Materials Engineering and Performance 6/2 (1997) 165-171.
  • [9] A. A. Ezow, Fracture types in structural steels, Metal Science and Heat Treatment 4 (2004) 34 (in Russian).
  • [10] N. G. Orekhov, E. B. Chabina, I. P. Zhegina, L. N. Belyakov, The destructive mechanisms in high-strength steels under the effect of impurities, Metal Science and Heat Treatment 37/1 (1995) 10-15 (in Russian).
  • [11] Y. Katz, N. Tymiak, W. W. Gerberich, Local approach contributions into the global view of the mechanical crack-tip environment formulation, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 162-165.
  • [12] L. A. Dobrzański, Metal Engineering Materials, WNT, Warsaw, 2004 (in Polish).
  • [13] J. Trzaska, L. A. Dobrzański, A. Jagiełło, Computer programme for prediction steel parameters after heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 24/ 2 (2007) 171-174.
  • [14] P. Bała, J. Pacyna, J. Krawczyk, The kinetics of phase transformations during tempering of Cr-Mo-V medium carbon steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 79-82.
  • [15] S. J. Pawlak, Austenite stability in the high strength metastable stainless steels, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 91-94.
  • [16] M. Hetmańczyk, L. Swadźba, B. Mendala, Advanced materials and protective coatings in aeroengines applications, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 372-381.
  • [17] L. A. Dobrzański, Engineering materials and material design, Principles of materials science and physical metallurgy, WNT, Warsaw, 2006 (in Polish).
  • [18] Technological Cooperation Forum-Pratt and Whitney Canada, Warsaw, 2006 (Warsaw Technical University).
  • [19] N. Wolańska, A. K. Lis, J. Lis, Investigation of C-Mn-B steel after hot deformation, Archives of Materials Science and Engineering 28/2 (2007) 119-125.
  • [20] K. Ducki, Structure and precipitation strengthening in a high temperature Fe-Ni alloy, Archives of Materials Science and Engineering 28/4 (2007) 203-210.
  • [21] M. Opiela, Thermo-mechanical treatment of the C-Mn steel with Nb, Ti, V and B microadditions, Archives of Materials Science and Engineering 28/6 (2007) 377-380.
  • [22] B. Koczurkiewicz, The model of prediction of microstructure austenite C-Mn steel, Archives of Materials Science and Engineering 28/7 (2007) 421-424.
  • [23] Application Note: Axisymmetric Uniaxial Compression Testing Using ISO-T Anvils on Gleeble Systems.
  • [24] GLEEBLE® 3500/3800 Options Reference Manual 2/98 N320, Chapter: Hot Deformation Options, Dynamic Systems Inc., 1996-1998.
  • [25] Measuring Flow Stress in Hot Axisymmetric Compression Tests, Revised Report National Physical Labolatory, Summer 2002.
  • [26] R. Kuziak, W. Zalecki, Z. Lapczynski, Physical simulation of metallurgical processes using Gleeble system, Institute for Ferrous Metallurgy, Report No S-00312/1/BM 2000 (in Polish).
  • [27] D. Szyndler, Inverse problem in the process parameters identification of metal plastic deformation, Ph. D. dissertation, AGH, Kraków, 2001(in Polish).
  • [28] A. Gavrus, E. Massoni, J. L. Chenot, An Inverse Analysis Using a Finite Element Model for Identification of Rheological Parameters, Journal of Materials Processing Technology 60 (1996) 447-454.
  • [29] J. G. Lenard, M. Pietrzyk, L. Cser, Mathematical and Physical Simulation of the Properties of Hot Rolled Product, Elsevier, Amsterdam, 1999.
  • [30] T. Kondek, D. Szeliga, M. Pietrzyk, Computer software for the identification of reological parameters based on axisymmetric compression test, Proceedings of the 10th Conference „Informatics in Metals Technology” KomPlasTech'2003, Wisła-Jawornik, 2003, 207-214.
  • [31] S. J. Pawlak, A. Maciosowski, J. Janiczek, J. Wiedermann, Development and implementation of quantitative metallographic testing methodology using digital image analyzer, IMZ Reports 1 (2006) 54-56 (in Polish).
  • [32] S. J. Pawlak, A. Maciosowski, J. Gazdowicz, Development of quantitative methods of the inclusion analysis with application to high purity high alloy steels, IMZ Reports, 2008 (in print).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0003-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.