PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular dynamics study of Cu-Pd ordered alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of the paper is to study the molecular dynamics of Cu-Pd ordered alloys. Design/methodology/approach: The thermal and mechanical properties of Cu, Pd pure metals and their ordered intermetallic alloys of Cu3Pd(L12) and CuPd3(L12) are studied by using the molecular dynamics simulation. The melting behavior of the metals considered in this work is studied by utilizing quantum Sutton-Chen (Q-SC) many-body potential. The effects of temperature and concentration on the physical properties of Cu-Pd system are analyzed. Findings: A wide range of properties of Cu, Pd pure metals and their Cu3Pd and CuPd3 ordered intermetallics is presented. It was found that this potential is suitable to give the general characteristics of the melting process in these systems. Practical implications: The simulation results such as cohesive energy, density, elastic constants, bulk modulus, heat capacity, thermal expansion and melting points are in good agreement with the available experimental data and other theoretical calculations. Originality/value: To the best our knowledge this work presents, for the first time, a wide range of physical properties of alloys focusing on Cu-Pd ordered compounds.
Rocznik
Strony
41--46
Opis fizyczny
Bibliogr. 47 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
  • Department of Physics, Pamukkale University, 20020 Denizli, Turkeyb Department of Chemical Engineering, Texas A&M University, TX77845-3122 Texas, USAc Department of Physics, Middle East Technical University, 06531 Ankara, Turkey, ozsev@pau.edu.tr
Bibliografia
  • [1] Z. W. Lu, S. H. Wei, A. Zunger, S. Frota-Pessoa, L. G. Ferreira, First-principles statistical mechanics of structural stability of intermetallic compounds, Physical Review B 44 (1991) 512-544.
  • [2] S. Taizawa, S. Blugel, K. Terakura, Theoretical study of the structural stability of CuPd and CuPt alloys: Pressure-induced phase transition of CuPt alloy, Physical Review B 43 (1991) 4947-955.
  • [3] P. Deurinck, C. Creemers, Monte Carlo simulation of Cu segration and ordering at the (110) surface of Cu75Pd25, Surface Science 419 (1998) 62-77.
  • [4] N. I. Papanicolaou, G. C. Kallinteris, G. A. Evangelakis, D. A. Papaconstantopoulos, M. J. Mehl, Second-moment interatomic potential for Cu-Au alloys based on total-energy calculations and its application to molecular-dynamics simulations, Journal of Physics Condensed Matters 10 (1998) 10979-10990.
  • [5] V. Shah, L. Yang, Nanometre fcc clusters versus bulk bcc alloy: the structure of Cu-Pd catalysts, Philosophical Magazine A 79 (1999) 2025-2049.
  • [6] G. D. Barrera, R. H. de Tendler, E. P. Isoardi, Structure and energetics of Cu-Au alloys, Modelling Simulations Materials Science Engineering 8 (2000) 389-401.
  • [7] N. Metadjer, A. Laref, Tight-binding calculation of structural properties of bulk Cu3Au and its corresponding clusters, Superlattices and Microstructures 30 (2001) 21-28.
  • [8] X. Wang, K. F. Ludwig, O. Malis, J. Mainville, Temperature dependence of the diffuse-scattering fine structure in Cu-Pd alloys, Physical Review B 63 (2001) 092201 1-4.
  • [9] W. Pfeiler, B. Sprusil, Atomic ordering in alloys: stable states and kinetics, Materials Science and Engineering A 324 (2002) 34-42.
  • [10] G. Bozzolo, J. E. Garces, R. D. Noebe, P. Abel, H. O. Mosca, Atomistic modelling of surface and bulk properties of Cu, Pd and Cu-Pd system, Progress in Surface Science 73 (2003) 79-116.
  • [11] P. Kamakoti, D. S. Sholl, A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory, Journal of Membrane Science 225 (2003) 145-154.
  • [12] E. J. Wu, G. Ceder, Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys, Physical Review B 67 (2003) 134103 1-7.
  • [13] P. Kamakoti, D. S. Sholl, Ab initio lattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys, Physical Review B. 71 (2005) 014301 1-9.
  • [14] H. H. Kart, M. Tomak, T. Cagin, Thermal and mechanical properties of Cu-Au intermetallic alloys, Modelling Simulations Materials Science Engineering 13 (2005) 357-669.
  • [15] J. K. Norskov, Covalent effects in the effective medium theory of chemical binding: Hydrogen heats of solutions in 3d metals, Physical Review B 26 (1982) 2875-2885.
  • [16] M. S. Daw, M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B 29 (1984) 6443-6453.
  • [17] M. W. Finnis, J. E. Sinclair, A simple empirical N-body potential for transition metals, Philosophical Magazine A 50 (1984) 45-55.
  • [18] A. P. Sutton, J. Chen, Long-range Finnis-Sinclair potentials, Philosophical Magazine Letters 61 (1990) 139-146.
  • [19] T. Çagin, Y. Qi, H. Li, Y. Kimura, H. Ikeda, W. L. Johnson, W. A. Goddard III, The quantum Sutton-Chen many-body potential for properties of fcc metals, MRS Symposium Ser. 554 (1999) 43.
  • [20] H. Ikeda, Y. Qi, T. Cagin, K. Samwer, W. L. Johnson, W. A. Goddard III, Strain rate induced amorphization of metallic nanowires, Physical Review Letters 82 (1999) 2900-2903.
  • [21] Y. Qi, T. Cagin, K. Samwer, W. L. Johnson, W. A. Goddard III, Melting and crystallization in Ni nanoclusters: The mesoscale regime, Journal of Chemical Physics 115 (2001) 385-394.
  • [22] A. Strachan, T. Cagin, K. Samwer, W. A. Goddard III, Critical behavior in spallation failure of metals, Physical Review B 63 (2001) 060103 1-4.
  • [23] Y. Qi, T. Cagin, Y. Kimura, W. A. Goddard III, Viscosities of liquid metal alloys from nonequilibrium molecular dynamics, Journal of Computer-Aided Materials Design 8 (2002) 233-243.
  • [24] S. Ozdemir Kart, M. Tomak, M. Uludogan, T. Cagin, Liquid properties og Pd-Ni alloys, Journal of Non-Crystalline Solids 337 (2004) 101-108.
  • [25] S. Ozdemir Kart, M. Tomak, T. Cagin, Phonon dispersions and elastic constants of disordered Pd-Ni alloys, Physica B 355 (2005) 382-391.
  • [26] S. Ozdemir Kart, M. Tomak, M. Uludogan, T. Cagin, Structural, thermodynamical, and transport properties of undercooled binary Pd-Ni alloys, Materials Science Engineering A 435-436 (2006) 736-744.
  • [27] H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, Journal of Chemical Physics 72/4 (1980) 2384-2393.
  • [28] M. Parrinello, A. Rahman, Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters 45 (1980) 1196-1199.
  • [29] S. Nose, A unified formulation of the constant temperature molecular dynamics method, Journal of Chemical Physics 81 (1984) 511-519.
  • [30] W. G. Hoover, Canonical dynamics: Equilibrium phase space-distributions, Physical Review A 31 (1985) 1695-1697.
  • [31] T. Çagin, B. M. Pettitt, Molecular dynamics with a variable number of molecules, Molecular Physics 72 (1991) 169-175.
  • [32] H. Rafii-Tabar, A. P. Sutton, Long-range Finnis-Sinclair potentials for f. c. c. metallic alloys, Philosophical Magazine Letters 63 (1991) 217-224.
  • [33] T. Çagin, R. Ray, Third-order elastic constants from molecular dynamics: Theory and an example calculation, Physical Review B 38 (1988) 7940-7946.
  • [34] T. Çagin, R. Ray, Elastic constants of sodium from molecular dynamics, Physical Review B 37 (1988) 699-705.
  • [35] G. Dereli, T. Çagin, T. M. Uludogan, M. Tomak, Thermal and mechanical properties of Pt-Rh alloys, Philosophical Magazine Letters 75 (1997) 209-218.
  • [36] C. Kittel, Introduction to solid state physics, Seventh Edition, John Wiley and Sons, New York, 1996.
  • [37] W. B. Perason, Handbook of lattice spacings and structure of metals, Pergamon Press, New York, 1967.
  • [38] I. Barin, Thermochemical data of pure substances, VCH, Verlagsgesellschaft mbH, Weinheim, 1989.
  • [39] V. L. Moruzzi, J. F. Janak, K. Schwarz, Calculated thermal properties of metals, Physical Review B 37 (1988) 790-799.
  • [40] F. Cleri, V. Rosato, Tight-binding potentials for transition metals and alloys, Physical Review B 48 (1993) 22-32.
  • [41] S. M. Foiles, J. M. Adams, Thermodynamic properties of fcc transition metals as calculated with the embedded-atom model, Physical Review B 40 (1989) 5909-5915.
  • [42] G. Simmons, H. Wang, Single crystal elastic constants and calculated aggregate properties, Second Edition, MIT Press, Cambridge, 1991.
  • [43] G. C. Kallinteris, N. I. Papanicolaou, G. A. Evangelakis, D. A. Papaconstantopoulos, Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation, Physical Review B 55 (1997) 2150-2156.
  • [44] R. Hultgren, D. D. Desai, D. T. Hawkins, Selected values of thermodynamic properties of binary alloys, ASM, Ohio, 1973.
  • [45] B. Sadigh, G. Grimvall, Molecular-dynamics study of thermodynamical properties of liquid copper, Physical Review B 54 (1996) 15742-15746.
  • [46] L. Gomez, A. Dobry, Melting properties of fcc metals using a tight-binding potential, Physical Review B 55 (1997) 6265-6271.
  • [47] T. Iida, R. I. L. Guthrie, The physical properties of liquid metals, Clarendon Press, Oxford, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0003-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.