PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Hot-working behaviour of high-manganese austenitic steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The work consisted in investigation of newly elaborated high-manganese austenitic steels with Nb and Ti microadditions in variable conditions of hot-working. Design/methodology/approach: Determination of processes controlling strain hardening was carried out in continuous compression test using Gleeble 3800 thermo-mechanical simulator. Findings: It was found that they have austenite microstructure with numerous annealing twins in the initial state. Continuous compression tests realized in the temperature range from 850 to 1050*C with the strain rate of 10s -1 enabled determination of yield stress values and values of εmax deformations-corresponding to maximum flow stress. It was found that initiation of dynamic recrystallization requires true strain equal at least 0.29. Holding of steel after plastic deformation allowed determining the progress of recrystallization in the function of isothermal holding time. Determined half-times of recrystallization at 900oC after deformation with 25% of reduction are equal 32 and 17s for 27Mn-4Si-2Al-Nb-Ti and 26Mn-3Si-3Al-Nb-Ti steel, respectively. Several-stage compression tests with true strain of 0.29 permit to use dynamic recrystallization for shaping fine-grained microstructure of steel in the whole range of deformation temperature. Decreasing true strain to 0.23 limits the course of dynamic recrystallization to two first deformation cycles. In two final cycles of deformation, as well as in the whole range of hot-working realized with true strain of 0.19-dynamic recovery is the process controlling strain hardening. Practical implications: The obtained microstructure-hot-working conditions relationships and stress-strain curves can be useful in determination of power-force parameters of hot-rolling for sheets with fine-grained austenitic structures. Originality/value: The hot-working behaviour and microstructure evolution in various conditions of plastic deformation for new-developed high-manganese austenitic steels with Nb and Ti microadditions were investigated.
Rocznik
Strony
7--14
Opis fizyczny
Bibliogr. 16 poz., il., tab., wykr.
Twórcy
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] J. Adamczyk, Theoretical Physical Metallurgy, The Silesian University of Technology Publishers, Gliwice, 2002 (in Polish).
  • [2] J. Adamczyk, A. Grajcar, Heat treatment and mechanical properties of low-carbon steel with dual-phase microstructure, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 13-20.
  • [3] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Materials Science and Engineering A 387-389 (2004) 158-162.
  • [4] L. A. Dobrzański, A. Grajcar, W. Borek, Influence of hot-working conditions on a structure of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 139-142.
  • [5] E. Doege, S. Kulp, Ch. Sunderkötter, Properties and application of TRIP-steel in sheet metal forming, Steel Research 73 (2002) 303-308.
  • [6] G. Frommeyer, O. Grässel, High strength TRIP/TWIP and superplastic steels: development, properties, application,La Revue de Metallurgie-CIT 10 (1998) 1299-1310.
  • [7] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43 (2003) 438-446.
  • [8] B. Gajda, A. K. Lis, Thermal processing of CMnAlSi steel at (α+γ) temperature range, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 355-358.
  • [9] S. Ganesh, S. Raman, K. A. Padmanabhan, Tensil deformation-induced martensitic transformation in AISI 304LN austenitic stainless steel, Journal of Materials Science Letters 13 (1994) 389-392.
  • [10] A. Grajcar, Hot-working in the γ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28/12 (2007) 743-750.
  • [11] O. Grässel, L. Krüger, G. Frommeyer, L. W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application, International Journal of Plasticity 16 (2000) 1391-1409.
  • [12] A. S. Hamada, L. P. Karjalainen, M. C. Somani, The influence of aluminium on hot deformation behaviour and tensile properties of high-Mn TWIP steels, Materials Science and Engineering A 467 (2007) 114-124.
  • [13] A. K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [14] G. Niewielski, M. Hetmańczyk, D. Kuc, Influence of the initial structure and deformation conditions on properties of hot-deformed austenitic steels, Materials Engineering 24 (2003) 795-798 (in Polish).
  • [15] H. Takechi, Application of IF based sheet steels in Japan, Proceedings of the International Conference „Processing, Microstructure and Properties of IF Steels”, Pittsburgh, 2000, 1-12.
  • [16] S. Vercammen, B. Blanpain, B. C. De Cooman, P. Wollants, Mechanical behaviour of an austenitic Fe-30Mn-3Al-3Si and the importance of deformation twinning, Acta Materialia 52 (2004) 2005-2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0003-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.