PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and mechanical behaviour of TRIP-type microalloyed steel in hot-working conditions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to investigate the influence of various deformation conditions on microstructure evolution and flow curves of TRIP-type steel. Design/methodology/approach: In order to determine the influence of MX-type interstitial phases on limiting the grain growth of primary austenite, samples were quenched in water from a temperature range, from 900 to 1200*C. Determination of processes controlling strain hardening was carried out in compression test using Gleeble 3800 simulator. The σ-ε curves were defined in a temperature range from 850 to 1150*C, for 0.1, 1 and 10s -1 of strain rate. To determine the progress of recrystallization samples were isothermally held for up to 60 s at 900 and 1000*C. Findings: Profitable impact of TiN and NbC particles on austenite grain growth limitation is present up to 1050*C. The values of flow stress are equal from 120 to 270 MPa. The steel is characterized by quite high values of deformation, εmax=0.4-0.65, corresponding to maximum stress on σ-ε curves. Beneficial grain refinement of primary austenite microstructure can be obtained due to static recrystallization. In temperature of 1000*C, t0.5 is equal 35 s and elongates to 43 s after decreasing deformation temperature to 900*C. The σ-ε curves obtained during multi-stage compression tests confirmed that a process controlling the strain hardening is a dynamical recovery. Research limitations/implications: To design hot-rolling conditions, the analysis of the primary austenite microstructure evolution during successive deformation cycles should be carried out. Practical implications: The obtained precipitation kinetics of MX-type phases and σ-ε curves are useful in determining hot-rolling conditions ensuring the fine-grained microstructure of primary austenite. Originality/value: The determined true stress-true strain curves were obtained for the TRIP-type microalloyed steel containing decreased Si concentration.
Rocznik
Strony
27--34
Opis fizyczny
Bibliogr. 30 poz., il., wykr.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, adam.grajcar@polsl.pl
Bibliografia
  • [1] J. Adamczyk, Development of the microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 9-20.
  • [2] A. D. Paepe, J. C. Herman, Improved deep drawability of IF-steels by the ferrite rolling practice, Proceedings of the 37th Conference „Mechanical Working and Steel Processing”, Baltimore, 1999, 951-962.
  • [3] H. Takechi, Application of IF based sheet steels in Japan, Proceedings of the International Conference „Processing, Microstructure and Properties of IF Steels”, Pittsburgh, 2000, 1-12.
  • [4] E. Hadasik, R. Kuziak, R. Kawalla, M. Adamczyk, M. Pietrzyk, Rheological model for simulation of hot rolling of new generation steel strip for automotive applications, Steel Research 77 (2006) 927-933.
  • [5] J. Adamczyk, A. Grajcar, Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 305-308.
  • [6] J. Adamczyk, A. Grajcar, Heat treatment and mechanical properties of low-carbon steel with dual-phase microstructure, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 13-20.
  • [7] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets obtained after the thermomechanical processing, Journal of Materials Processing Technology 162-163 (2005) 23-27.
  • [8] A. Basuki, E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology 89-90 (1999) 37-43.
  • [9] B. Gajda, A. K. Lis, Thermal processing of CMnAlSi steel at (α+γ) temperature range, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 355-358.
  • [10] A. K. Lis, B. Gajda, Modelling of the DP and TRIP microstructure in the CMnAlSi automotive steel, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 127-134.
  • [11] A. Grajcar, Effect of hot-working in the γ+α range on a retained austenite fraction in TRIP-aided steel, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 79-82.
  • [12] B. Gajda, A. K. Lis, Intercritical annealing with isothermal holding of TRIP CMnAlSi steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 439-442.
  • [13] I. S. Kim, U. Reichel, Effect of bainite on mechanical properties of dual-phase steels, Steel Research 58 (1987) 186-190.
  • [14] E. Doege, S. Kulp, Ch. Sunderkötter, Properties and application of TRIP-steel in sheet metal forming, Steel Research 73 (2002) 303-308.
  • [15] S. Wen, L. Lin, B. De Cooman, P. Wollants, Y. Chun-Xia, Thermal stability of retained austenite in TRIP steel after different treatments, Journal of Iron and Steel Research 15 (2006) 61-64.
  • [16] K. Eberle, P. Cantinieaux, P. Harlet, M. Vande Populiere, New thermomechanical strategies for the realization of multiphase steels showing a TRIP effect, I&SM 26 (1999) 23-27.
  • [17] N. Apostolos, A. Vasilakos, W. Bleck, Experimental determination of the stability of retained austenite in low alloy TRIP steels, Steel Research 11 (1999) 466-471.
  • [18] J. Pietrzyk, W. Osuch, G. Michta, The isothermal decomposition of the austenite obtained at a temperature between A3-A1 in a steel containing 0.2%C, 1.5%Mn and 1.5%Si, Materials Engineering 19 (1998) 18-23 (in Polish).
  • [19] B. C. De Cooman, Structure-properties relationship in TRIP-steels containing carbide-free bainite, Current Opinion in Solid State and Materials Science 8 (2004) 285-303.
  • [20] J. Mahieu, D. Van Dooren, L. Barbe, B. C. De Cooman, Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels, Steel Research 73 (2002) 267-273.
  • [21] N. Apostolos, A. Vasilakos, K. Papamantellos, W. Bleck, Experimental determination of the stability of retained austenite, Steel Research 11 (1999) 466-471.
  • [22] A. Grajcar, Hot-working in the γ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28/12 (2007) 743-750.
  • [23] I. B. Timokhina, P. D. Hodgson, E. V. Pereloma, Effect of alloying elements on the microstructure-property relationship in thermomechanically processed C-Mn-Si TRIP steels, Steel Research 73 (2002) 274-286.
  • [24] J. Adamczyk, Engineering of Metallic Materials, The Silesian University of Technology Publishers, Gliwice, 2004 (in Polish).
  • [25] B. Koczurkiewicz, The model of prediction of the microstructure austenite C-Mn steel, Archives of Materials Science and Engineering 28/7 (2007) 421-424.
  • [26] N. Wolańska, A. K. Lis, J. Lis, Investigation of C-Mn-B steel after hot deformation, Archives of Materials Science and Engineering 28/2 (2007) 119-125.
  • [27] R. Kawalla, G. Goldhahn, Laboratory rolling condition and its effect on material properties of hot rolled products, Proceedings of the 2nd International Conference „Thermomechanical Processing of Steel” TMP'2004, Liege, 2004, 17-24.
  • [28] J. Majta, R. Kuziak, M. Pietrzyk, Modelling of the influence of thermomechanical processing of Nb-microalloyed steel on the resulting mechanical properties, Journal of Materials Processing Technology 80-81 (1998) 524-530.
  • [29] E. Hadasik, R. Kuziak, R. Kawalla, M. Adamczyk, M. Pietrzyk, Rheological model for simulation of hot rolling of new generation steel strip for automotive applications, Steel Research 77 (2006) 927-933.
  • [30] T. Siwecki, Physical metallurgy and modeling of microalloyed steels, Materials Engineering 3 (1998) 163-170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0003-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.