PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of the wire feed rate during pulse MIG welding of Al sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper aims at optimizing the wire feed speed against the welding speed during the pulse-MIG (Metal Inert Gas) lap joint fillet weld of 1.6 mm aluminium alloy typically used for the light-weight car body. Design/methodology/approach: Welding experiments were conducted with various wire feed speeds of 0.5 m/min, 1.0 m/min, and 1.5 m/min, and the bead characteristics were evaluated. As shape factors of the weld bead, the bead width, back bead width, and bead cross-section area were measured. According to the weld quality and defined objective functions, the wire feed speed was optimized for various welding speeds. Findings: The wire feed speed that induces the optimum weld quality was found with welding speeds of 0.5 m/min, 1.0 m/min, and 1.5 m/min. The optimum lap welding conditions were then suggested for 1.6 mm aluminium alloy considering the productivity and quality. Research limitations/implications: The optimization will be extended to various aluminium alloys and the optimized results will be stored in the Al welding database of the intelligent welding power source development. Practical implications: With the increase of the welding speed for aluminium sheet welding, the corresponding wire feed speed should increase as well. On the other hand, it is clear that the maximum value of the objective function has decreased. Originality/value: This research revealed the relationship between the welding speed and the wire feed speed considering the welding productivity and quality. In addition, the criterion to evaluate the degree of weldability during lap welding is suggested according to the quality and objective functions.
Rocznik
Strony
83--86
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
  • Department of Mechanical Engineering, Hanyang University,17 Haengdang-Dong, Seoul, Korea, dckim@kitech.re.kr
Bibliografia
  • [1] P. K. D. V. Yarlagadda, P. Praveen, V. K. Madasu, S. Rhee, Detection of short circuit in pulse gas metal arc welding process, Journal of Achievements in Materials and Manufacturing Engineering 24/1 (2007) 328-332.
  • [2] P. Praveen, M. J. Kang, P. K. D. V. Yarlagadda, Characterization of dynamic behaviour of short circuit in pulsed Gas Metal Arc Welding of aluminium, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 75-82.
  • [3] G. Mrowka-Nowotnik, J. Sieniawski, M. Wierzbinska, Intermetallic phase particles in 6082 aluminium, Archives of Materials Science and Engineering 28/2 (2007) 69-76.
  • [4] T. Y. Kuo, H. C. Lin, Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminium alloys, Materials Science and Engineering A416 (2006) 281-289.
  • [5] M. Kciuk, The structure, mechanical properties and corrosion resistance of aluminium AlMg1Si1 alloy, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 51-56.
  • [6] J. Adamowski, M. Szkodo, FSW of aluminium alloy AW6082-T6, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 403-406.
  • [7] J. Adamowski, C. Gambaro, E. Lertora, M. Ponte, M. Szkodo, Analysis of FSW welds made of aluminium alloy AW6082-T6, Archives of Materials Science and Engineering 28/8 (2007) 453-460.
  • [8] T. S. Kumar, V. Balasubramanian, M. Y. Sanavullah, Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy, Materials and Design 28 (2007) 2080-2092.
  • [9] P. K. Palani, N. Murugan, Selection of parameters of pulsed current gas metal arc welding, Journal of Materials Processing Technology 172 (2006) 1-10.
  • [10] P. K. Ghosh, L. Dorn, M. Hubner, V. K. Goyal, Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of aluminium alloy, Journal of Materials Processing Technology 194 (2007) 163-175.
  • [11] B. S. Subramaniam, D. R. White, J. E. Jones, D. W. Lyons, Experimental Approach to selection of pulsing parameters in pulsed GMAW, Welding Journal 11 (1999) 166-172.
  • [12] N. Murugan, R. S. Parmer, S. K. Sud, Effect of submerged arc process variables on dilution and bead geometry in single wire surfacing, Journal of Materials Processing Technology 37 (1993) 767-780.
  • [13] I. S. Kim, J. S. Son, I. G. Kim, J. Y. Kim, O. S. Kim, A study on relationship between process variables and bead penetration for robotic CO2 arc welding, Journal of Materials Processing Technology 136 (2003) 139-145.
  • [14] D. C. Kim, S. H. Rhee, Optimization of welding process parameter for an arc welding process using a genetic algorithm, Welding Journal 80/6 (2001) 184-189.
  • [15] J. P. Ganjigatti, D. K. Pratihar, A. R. Choudhury, Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process, Journal of Materials Processing Technology 189 (2007) 352-366.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.