PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Material parameters identification by use of hybrid GA

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to develop material parameters identification algorithm for yield criterion BBC2003 using global optimization techniques. Design/methodology/approach: An algorithm proposed is based on use of error minimization function, which allows considering over-constraining. Due to strong nonlinearity of the problem considered a number of solutions is available. In order to determine global extreme two stage GA (global optimization technique) is treated. Findings: Numerical material parameters identification algorithm is developed. An approach provided allows reducing significantly the dimension of the nonlinear system before its numerical solution. Convergence to global extreme can be expected due to global optimization technique employed. Research limitations/implications: An analysis is done by keeping formability analysis in mind and only material parameters involved in yield criterion in space of principal stresses are considered. Thus the results can be generalized by including terms corresponding to shear stresses. Practical implications: Advanced yield criteria like BBC2003 are still not used extensively due to the complexities accrued: increasing number of material parameters (additional tests), a complex non-linear programming problem. An algorithm proposed simplifies the material parameters identification process for considered yield criteria BBC2003. The formability analysis of the 6000 series aluminium alloy sheet AA6181-T4 is considered as a case study and used for testing the algorithm proposed. Originality/value: In the case of posed optimization problem the dimension of the design space is reduced from six to two. Over-constraining and under-constraining are considered in algorithm (situations, where number of unknown parameters is not equal with the number of given constraints, are covered).
Rocznik
Strony
63--66
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
autor
autor
  • Department of Machinery, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia, jmajak@staff.ttu.ee
Bibliografia
  • [1] D. Banabic, H. Aretz, D. S. Comsa, L. Paraianu, An improved analytical description of orthotropy in metallic sheets, International Journal of Plasticity 21 (2005) 493-512.
  • [2] F. Barlat, F. J. Brem, W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets-part 1: theory, International Journal of Plasticity 19 (2003) 1297-1319.
  • [3] F. Barlat, J. Lian, Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions, International Journal of Plasticity 5 (1989) 51-66.
  • [4] H. Aretz, A non-quadratic plane stress yield function for orthotropic sheet metals, Journal of Materials Processing Technology 168/1 (2005) 1-9.
  • [5] M. C. Butuc, D. Banabic, A. Barata da Rocha, J. J. Gracio, J. Ferreira Duarte, P. Jurco and D. S. Comsa, The performance of Yld96 and BBC2000 yield functions in forming limit prediction, Journal of Materials Processing Technology 125-126 (2005) 281-286.
  • [6] L. Paraianu, D. S. Comsa, G. Cosovici, P. Jurco, D. Banabic, An improvement of BBC2000 yield criterion, Proceedings of the ESAFORM Conference, Salerno, 2003.
  • [7] A. P. Karafillis, M. C. Boyce, A general anisotropic yield crite-rion using bounds and a transformation weighting tensor, Journal of Mechanics and Physics of Solids 41 (1993) 1859-1886.
  • [8] H. Aretz, O. S. Hopperstad, O. G. Lademo, Yield function calibration for orthotropic sheet metals based on uniaxial and plane strain tensile tests, Journal of Materials Processing Technology 186 (2007) 221-235.
  • [9] E. Majchrzak, J. Mandakiewicz, M. Paruch, Application of evolutionary algorithms in identification of solidification parameters, Journal of Achievements in Materials and Manufacturing Engineering 23/2 (2007) 67-70.
  • [10] M. Pohlak, J. Majak, M. Eerme, Optimization of car frontal protection system, International Journal of Simulation and Multidisciplinary Design Optimization 1 (2007) 31-37.
  • [11] B. J. Henz, R. V. Mohan, D. R. Shires DR, A hybrid global-local approach for optimization of injection gate locations in liquid composite moulding process simulations, Composites A38 (2007) 1932-1946.
  • [12] Y. M. Park, J. B. Park, J. R. Won, A hybrid genetic algorithm dynamic programming approach to optimal long-term generation expansion planning, International Journal of Electrical Power & Energy Systems 20/4 (1998) 295-303.
  • [13] A. Konak, M. R. Bartolacci MR, Designing survivable resilient networks: A stochastic hybrid genetic algorithm approach, International Journal of Management Science 35 (2007) 645-658.
  • [14] J. Majak, M. Pohlak, R. Küttner, A simple algorithm for formability analysis, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 57-60.
  • [15] J. Majak, M. Pohlak, R. Küttner, An algorithm for localised and diffuse necking analysis, International Journal of Computational Materials Science and Surface Engineering 1/4 (2007) 494-508.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0071
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.