PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital modelling of a human skull

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper describes the first step of a project that aims to improve the design and placement of dental prostheses through an in-depth analysis of jaw movement. This analysis requires prior obtaining quality digital models of all elements involved in the movement. The paper describes the process to obtain the digital models through Reverse Engineering techniques, and evaluates their quality. Design/methodology/approach: The process of digitalization of a human skull by means of a hand-held 3D laser scanner has been evaluated to see the suitability of this technique. A skull has been chosen as test element as it has several characteristics that make its digitisation by optical techniques difficult, such as a non-uniform surface and a complex geometry. The surfaces obtained by the scanner have been edited by point cloud edition software. Findings: Reverse Engineering optical hardware has several limitations to correctly digitize complex geometries, but these deficiencies can be solved using the Reverse Engineering software properly. Research limitations/implications: The same analysis should be performed by point clouds obtained through other Reverse Engineering technologies, such as structured light scanners. These technologies can achieve best values of accuracy and resolution, so that both results should be compared. Practical implications: This paper gives the chance to apply Reverse Engineering techniques to achieve high quality digital models of free form complex geometries. The constraints presented by optical digitization technologies can be solved through powerful point cloud edition software. Originality/value: This paper describes the process of digitalization of complex free form geometries and the subsequent point cloud edition.
Rocznik
Strony
55--58
Opis fizyczny
Bibliogr. 15 poz., il.
Twórcy
autor
autor
autor
  • Graphic Design and Engineering Projects, The University of the Basque Country, Alda. Urquijo s/n, Bilbao, Spain, olatz.etxaniz@ehu.es
Bibliografia
  • [1] M. Balazic, J. Kopac, Improvements of medical implants based on modern materials and new technologies, Journal of Achievements in Materials and Manufacturing Engineering 25/2 (2007) 31-34.
  • [2] P. Hébert, A self referenced hand held range sensor. Proceedings of the IEEE International Conference on Recent Advantages in 3-D Digital Imaging and Modelling, 2001, 5-12.
  • [3] J-N. Ouellet, P. Hébert, Developing assistant tools for geometric camera calibration: assessing the quality of input images, Proceedings of the 17th International Conference on Pattern Recognition 4, 2004, 80-83.
  • [4] D. Deschenes, P. Hébert, P. Lambert, J.-N. Quellet, D. Tubic, Multiresolution interactive modeling with efficient visualization, Proceedings of the 5th International Conference on 3D Digital Imaging and Modelling, 2005, 39-46.
  • [5] Y. J. Xing, J. Xing, J. Sun, L. Hu, An improved neural networks for stereo-camera calibration, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 315-318.
  • [6] F. Prieto, T. Redarce, R. Lepage, P. Boulanger, Visual systems for fast and automated inspection of 3D parts, Revue Int de CFAO et d’informatique graphique, 1999, 1-17.
  • [7] L. Kobbelt, M. Botsch, Freeform shape representations for efficient geometry processing, Shape Modelling International (2003) 111-115.
  • [8] B. Valentan, T. Brajlih, I. Drstwensek, J. Balic, Basic solutions on shape complexity evaluation of STL data, Journal of Achievements in Materials and Manufacturing Engineering 26/1 (2008) 73-80.
  • [9] K. Hormann, U. Labsik, G. Greiner, Remeshing triangulated surfaces with optimal parameterizations, Computer-Aided Design 33 (2001) 779-788.
  • [10] E. Sierra, E. Solaberrieta, R. Minguez, L. Barrenetxea, B. Belaustegigoitia, I. Larrakoetxea, A University-company project: design of a new surfboards digital modelling process, Proceedings of the 12th International Conference on Geometry and Graphics, Salvador, Brazil, 2006.
  • [11] M. Sokovic, M. Cedilnik, J. Kopac, Use of 3D-scanning and reverse engineering by manufacturing of complex shapes, Proceedings of the 13th International Scientific Conference “Achievements in Mechanical and Materials Engineering” AMME' 2005, Gliwice-Wisła, 2005, 601-604.
  • [12] B. Vaupotic, M. Brezocnik, J. Balic, Use of PolyJet technology in manufacture of new product, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 319-322.
  • [13] G. Osorio, J. Osorio, F. Prieto, Review on modeling of complex surfaces, Dyna 71 (2004) 69-76 (in Spanish).
  • [14] P. Benkö, R. Martin, T. Varady, Algorithms for reverse engineering boundary representations models, Computer Aided Design 33/11 (2001) 839-851.
  • [15] G. Taubin, Dual mesh resampling, Computer Graphics and Applications (2001) 180-188.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.