PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Cavitation behaviour of the SUPERSTON alloy after laser treatment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Results of laser treatment at cryogenic conditions and its influence on microstructure, microhardness and cavitation resistance of the SUPERSTON alloy are presented in this paper. Design/methodology/approach: New method of the laser remelting specimens diped in liquid nitrogen made by the CO2 laser with 4000 W laser beam power and scanning velocity 0.5 and 1.0 m/min was employed. Observation microstructure was carried out by scanning electron microscope. Hardness of cross-section of the surface layer has been measured by the Vickers microhardness under load 0.49 N. Cavitation test in the water using rotating disc facility was done. Findings: Laser remelting let obtain fine microstructure in surface layer and increase of microhardness and cavitation resistance, compared to casting the SUPERSTON alloy. Research limitations/implications: The future investigations connected with environment conditions should be extend of internal stresses in the SUPERSTON alloy after laser remelting at cryogenic conditions. Practical implications: Obtained results point at possibility of the increase hardness and cavitation resistance of the parts worked in cavitation conditions. Originality/value: The propose laser treatment at cryogenic conditions could be used for surface consolidation of the copper alloys applied for ship propellers.
Rocznik
Strony
199--202
Opis fizyczny
Bibliogr. 15 poz., il., tab.
Twórcy
autor
  • Department of Materials Science and Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland, bmajkows@mech.pg.gda.pl
Bibliografia
  • [1] W. Serbiński, B. Majkowska, Microstructure and corrosion properties of the laser treated SUPERSTON alloy, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 415-418.
  • [2] B. Majkowska, W. Serbiński, I. Skalski, Microsructural aspects of corrosion of the SUPERSTON alloy after laser treatment, Advance in Materials Science 11 (2007) 141-146.
  • [3] W. Serbiński, J. M. Olive, A. Kibitlewski, Influence of the heat treatment on corrosion characteistics of the SUPERSTON alloy, Advance in Materials Science 13 (2007) 147-158.
  • [4] W. Serbiński, B. Majkowska, I. Skalski, Stress corrosion cracking of regenerated ship propellers blades, Materials and Technologies 2/2 (2004) 141-144 (in Polish).
  • [5] L. Ciura, J. Stobrawa, W. Malec, K. Joszt, Progress in copper alloys sphere, Proceedings of the 7th International Scientific Conference “Achievements in Mechanical and Materials Engeeniering”, AMME 1998, Gliwice-Zakopane 1998, 85-94.
  • [6] W. Serbiński, The method and results of the laser surface treatment of aluminium alloys at cryogenic temperature, Materials Science 6/119 (2000) 434-437 (in Polish).
  • [7] W. Serbiński, A. Zieliński, T. Wierzchoń, Laser assisted forming of the surface layer of Al-Si alloy at cryogenic conditions, Materials Science 3/140 656-658.
  • [8] Sen Yang, Yunpeng Su, Weidong Huang, Yaohe Zhou, Microstructure characteristics of Cu-Mn alloys during laser serface remelting, Materials Science and Engineering A 386 (2004) 367-374.
  • [9] C. H. Tang, F. T. Cheng, H. C. Man, Improvement In cavitation erosion resistance of a copper-based propeller alloy by laser surface melting, Surface and Technology 182 (2004) 300-307.
  • [10] C. H. Tang, F. T. Cheng, H. C. Man, Effect of surface melting on the corrosion and cavitation erosion behaviors of manganese-nickel-aluminium bronze, Materials Science and Engineering A 373 (2004) 195-203.
  • [11] M. Szkodo, Relationship between microstructure of laser alloyed af C45 steel and its cavitation resistance, Proceedings of the 13th Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME'2005, Gliwice-Wisła, 2005, 643-646.
  • [12] A. Al-Hashem, W. Riad, The role of microstructure of nickel-aluminium-bronze alloy on its cavitation corrosion behavior in natural seawater, Materials Characterisation 48 (2002) 37-41.
  • [13] C. H. Tang, F. T. Cheng, H. C. Man, Laser surface alloying of marine propeller bronze using aluminum powder. Part I: Microstructural analysis and cavitation erosion study, Surface & Coating Technology 200 (2006) 2602-2609.
  • [14] C. H. Tang, F. T. Cheng, H. C. Man, Part II: Corrosion and erosion-corrosion synergism, Surface & Coating Technology 200 (2006) 2594-2601.
  • [15] ASTM Standard G32-92, Standard Method of Vibratory Cavitation Erosion Test, ASTM Standards, Philadelphia 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.