PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterisation of APS TBC system during isothermal oxidation at 1100oC

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of presented investigations was metallographical characterization of failure modes of air plasma sprayed thermal barrier coatings system in isothermal oxidation test conditions at 1100C. Design/methodology/approach: The research allowed the characterization of microstructural changes during oxidation test of zirconia coating in area of ceramic top-layer, bond coat and superalloy substrate. The examinations were conducted on TBC's specimens after 50, 120, 500, 1000, 1500 and 2000h of exposition and encompassed a microstructural analysis with the use of macro and micro investigation-LM, SEM microscopy. Findings: It was found that the durability of commercially quality TBC system is related to progress of degradation modes of bond coat and top layer. During isothermal oxidation test, the bond coat was oxidized to form of a dens alumina and a porous mixed oxide layer between the top coat of YSZ and bond coat of NiCoCrAlY alloy. At the moment of oxidation acceleration, the process of cracks initiation and propagation was observed mainly in the mixed oxide layer near the YSZ. The observed crack propagation inducted the delamination and spallation of top coat after 1000h oxidation. Research limitations/implications: The discussed research showed that main reason of degradation in TBC system is related to development of cracks at the interface between thermally grown oxide and bond coat, within the top coat or at its interface with TGO. Practical implications: The results allow the determination of the degree of durability lost of the thermal brier coating system and specification of the time of safety operation. Originality/value: The obtained results are valuable contribution to characterization of TBC systems. They enable the identification of the degradation mechanisms, which enhances the durability and safety of high temperature operation.
Słowa kluczowe
Rocznik
Strony
757--764
Opis fizyczny
Bibliogr. 16 poz., il., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] F. Cernusci, P. Bianchi, M. Leoni, P. Scardi, Thermal Diffusivity/Microstructure Relationship in Y-PSZ Thermal Barrier Coatings, Journal of Thermal Spray Technology 8/1 (1999) 102-109.
  • [2] J. T. DeMasi-Marcin, D. K. Gupta, Protective coatings in the gas turbine engine Surface and Coating Technology 68/69 (1994) 1-9.
  • [3] J. Wigren, L. Pejryd, Thermal barrier coatings-why, how, where and where to, thermal spray: meeting the challenges of the 21st century, in: C. Coddet (Ed.), Proceedings of the 15th International Thermal Spray Conference, ASM International, 1998, 1531-1542.
  • [4] K. A. Khor, S. Jana, Pulse laser processing of plasma sprayed thermal barrier coating, Journal of Materials Processing Technology 66 (1996) 4-8.
  • [5] B. Siebert, C. Funke, R. Vaben, D. Stover, Changes in porosity and Young's Modulus due to sintering of plasma sprayed thermal barrier coatings, Journal of Materials Processing Technology 92-93 (1999) 217-223.
  • [6] M. Konter, M. Thumann, Materials and manufacturing of advanced industrial gas turbine components, Journal of Materials Processing Technology 92-117 (2001) 386-390.
  • [7] J. Kamalua, P. Byrdb, A. Pitman, Variable angle laser drilling of thermal barrier coated nimonic, J. Kamalua, Journal of Materials Processing Technology 122 (2002) 355-362.
  • [8] V. Teixeira, M. Andritschky, W. Fischer, H. P. Buchkremer, D. Stover, Analysis of residual stresses in thermal barrier coatings, Journal of Materials Processing Technology 92-93 (1999) 209-216.
  • [9] J. F. Li, H. L. Liao, C. X. Ding, C. Coddet, Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments, Journal of Materials Processing Technology 160 (2005) 34-42.
  • [10] A. K. Ray, Characterization of bond coat in a thermal barrier coated superalloy used in combustor liners of aero engines, Materials Characterization 57 (2006) 199-209.
  • [11] W. A. Nelson and R. M. Orenstein, TBC experience in landbased gas turbines, Journal of Thermal Spray Technology 6 (1997) 176-180.
  • [12] D. Stover, C. Funke, Directions of the development of thermal barrier coatings in energy applications, Journal of Materials Processing Technology, 92-93 (1999) 195-202.
  • [13] S. Q. Nusier, G. M. Newaz: Growth of interfacial cracks in a TBC/superalloy system due to oxide volume induced internal pressure and thermal loading, International Journal of Solids and Structures 37 (2000) 2151-2166.
  • [14] A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, Pettit FS., Mechanisms controlling the durability of thermal barrier coatings, Progress in Materials Science 46 (2001) 505-53.
  • [15] M. Martena, D. Botto, P. Fino, S. Sabbadini, M. M. Gola, C. Badini, Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch, Engineering Failure Analysis 13 (2006) 409-426.
  • [16] L. Swadźba, G. Moskal, B. Mendla, T. Gancarczyk, Characterization of air plasma sprayed TBC coatings during isothermal oxidation at 1100oC, Journal of Achievements in Materials and Manufacturing Engineering 21/2 (2007) 81-84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.