PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hot-working in the γ + α region of TRIP-aided microalloyed steel

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to investigate the influence of hot-working in the γ + α range and isothermal holding temperature in a bainitic range on a stability of retained austenite in a TRIP-aided microalloyed steel. Design/methodology/approach: The thermomechanical processing in the γ + α range to obtain multiphase structures with the retained austenite in a microalloyed steel was realized. It consisted of plastic deformation of specimens at 750°C or 780°C, oil cooling and isothermal holding in a bainitic region. Degree of deformation was 28 or 50%. To reveal the multiphase structure optical and transmission electron microscopy were used. X-ray diffraction method was employed to determine a volume fraction of retained austenite. Findings: It was found that hot-working in the two-phase region influences essentially a multiphase structure of investigated steel. The ferrite fraction is comparable for heat-treated and thermo-mechanically processed specimens but the ferrite grain size is twice smaller in a case of plastically-deformed specimens. The optimum isothermal holding temperature in a bainitic range is 300°C, independent on austenitizing temperature. The specimens forged in the γ + α range and isothermally held at this temperature made it possible to obtain about 10% of retained austenite. Research limitations/implications: Investigations concerning the influence of isothermal holding time in a bainitic range on the stability of retained austenite should be carried out. Practical implications: The established conditions of the thermomechanical processing can be useful in a development of the hot-rolling technology for TRIP-aided microalloyed steels. Originality/value: The realized thermomechanical processing enabled to obtain about 10% fraction of retained austenite in a steel containing 0.5% Si.
Rocznik
Strony
743--750
Opis fizyczny
Bibliogr. 28 poz., il., tab., wykr.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, adam.grajcar@polsl.pl
Bibliografia
  • [1] H. Hayashi, T. Nakagawa, Recent trends in sheet metals and their formability in manufacturing automotive panels, Journal of Materials Processing Technology 46 (1994) 455-487.
  • [2] R. Torres, J. Esparza, E. Velasco, S. Garcia-Luna, R. Colas, Characterization of an aluminium engine block, International Journal of Microstructure and Materials Properties 1 (2006) 129-138.
  • [3] L. Cizek, M. Greger, L. Pawlica, L. A. Dobrzański, T. Tański, Study of selected properties of magnezium alloy AZ91 after heat treatment and forming, Journal of Materials Processing Technology 157-158 (2004) 466-471.
  • [4] T. Gladman, The Physical Metallurgy of Microalloyed Steels, The University Press, Cambridge, 1997.
  • [5] J. Adamczyk, M. Opiela, Influence of the thermomechanical treatment parameters on the inhomogenity of the austenite structure and mechanical properties of the Cr-Mo steel with Nb, Ti, and B microadditions, Journal of Materials Processing Technology 157-158 (2004) 456-461.
  • [6] S. I. Kim, S. H. Choi, Y. Lee, Influence of phosphorus and boron on dynamic recrystallization and microstructures of hot-rolled interstitial free steel, Materials Science and Engineering A 406 (2005) 125-133.
  • [7] H. Takechi, Application of IF based sheet steels in Japan, Proceedings of the International Conference on the Processing, Microstructure and Properties of IF Steels, Pittsburgh, 2000, 1-12.
  • [8] D. K. Mondal, R. K. Ray, Microstructural changes and kinetics of recrystallization in a few dual-phase steels, Steel Research 60 (1989) 33-40.
  • [9] J. Adamczyk, A. Grajcar, Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 305-308.
  • [10] B. Ehrhardt, T. Berger, H. Hofmann, T. W. Schaumann, Property related design of advanced cold rolled steels with induced plasticity, Steel Grips 2 (2004) 247-255.
  • [11] B. Gajda, A. K. Lis, Thermal processing of CMnAlSi steel at (γ+α) temperature range, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 355-358.
  • [12] A. Grajcar, Effect of hot-working in the γ+α range on a retained austenite fraction in TRIP-aided steel, Journal of Achievements in Materials and Manufacturing Engineering 22/2 (2007) 79-82.
  • [13] A. Wasilkowska, P. Tispouridis, A. Werner, A. Pichler, S. Traint, Microstructure and tensile behaviour of cold-rolled TRIP-aided steels, Proceedings of the 11th Scientific International Conference „Achievements in Mechanical and Materials Engineering'2002”, Gliwice-Zakopane, 2002, 605-610.
  • [14] J. Pietrzyk, W. Osuch, G. Michta, The isothermal decomposition of the austenite obtained at a temperature between A3-A1 in a steel containing 0.2%C, 1.5%Mn and 1.5%Si, Materials Engineering 19 (1998) 18-23 (in Polish).
  • [15] Y. Tomita, K. Morioka, Effect of microstructure on transformation-induced plasticity of silicon-containing lowalloy steel, Materials Characterization 38 (1997) 243-250.
  • [16] K. Eberle, P. Cantinieaux, P. Harlet, New thermomechanical strategies for the production of high strength low alloyed multiphase steel showing a transformation induced plasticity effect, Steel Research 70 (1999) 233-238.
  • [17] A. Pichler, P. Stiaszny, TRIP steel with reduced silicon content, Steel Research 70 (1999) 459-465.
  • [18] J. Mahieu, D. Van Dooren, B. Liesbeth, B. C. De Cooman, Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification, Steel Research 73 (2002) 267-273.
  • [19] B. Mintz, The influence of aluminium on the strength and impact properties of steel, Proceedings of the International Conference on TRIP-Aided High Strength Ferrous Alloys, Ghent, 2002, 379-382.
  • [20] N. Apostolos, A. Vasilakos, K. Papamantellos, G. Haidemenopoulos, W. Bleck, Experimental determination of the stability of retained austenite, Steel Research 11 (1999) 466-471.
  • [21] J. Adamczyk, A. Grajcar, Structure and mechanical properties of DP-type and TRIP-type sheets, Journal of Materials Processing Technology 162-163 (2005) 267-274.
  • [22] O. Muransky, P. Hornak, P. Lukas, J. Zrnik, P. Sittner, Investigation of retained austenite stability in Mn-Si TRIP steel in tensile deformation condition, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 26-30.
  • [23] A. Basuki, E. Aernoudt, Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite, Journal of Materials Processing Technology 89-90 (1999) 37-43.
  • [24] H. Nasr El-Din, Effect of cold deformation and multiphase treatment conditions on the characterization of low-carbon, low-silicon multiphase steel, Steel Grips 3 (2005) 196-205.
  • [25] B. Garbarz, A. Żak, J. Wojtas, R. Molenda, The effect of fine particles of nonmetallic inclusions on the austenite grain growth in microalloyed steels, Materials Engineering 108 (1999) 5-12 (in Polish).
  • [26] J. Adamczyk, Development of the microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 9-20.
  • [27] K. W. Andrews, Empirical formulae for the calculation of some transformation temperatures, Journal of the Iron and Steel Institute 7 (1965) 721-727.
  • [28] E. Girault, P. Jacques, P. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, F. Delannay, Metallographic methods for revealing the multiphase structure, Materials Characterization 40 (1998) 111-118.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.