PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method for ultrasonic quality evaluation of glass/polyester composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the present study was to find relationship between the ultrasonic wave velocity or attenuation coefficient and the local fiber content in glass/polyester composites. Design/methodology/approach: Experimental data have been obtained using ultrasonic wave velocity and attenuation measurements. To determine the actual fiber content in the composites, needed to build proper relationships between considered factors, the standard destructive analysis was applied. For ultrasonic nondestructive testing, through-transmission technique was used. Findings: Experimental results have shown that the longitudinal wave velocity increases almost linearly with an increase of the fiber content in the investigated specimens. The second considered parameter of an ultrasonic wave, namely attenuation coefficient was not correlated with the glass content. Research limitations/implications: The propagation velocity of the ultrasonic waves can be affected, apart from fiber content, by interfacial stresses and changes of elastic modulus in polymer matrix during long-lasting service time. These factors overlap and which of the two can affect the ultrasonic wave to a higher degree is yet to established. Further work is needed in this area. Practical implications: The described method can be applied to the post-production quality control of a finished composite product, but in the case of composites made of different constituent materials it is necessary to determine distinct relationships for each composite. Originality/value: The results obtained would be of considerable importance in the industrial applications to achieve a first estimate of fiber content variations in polymer composite materials.
Rocznik
Strony
729--734
Opis fizyczny
Bibliogr. 27 poz., il., tab., wykr.
Twórcy
autor
autor
  • Division of Metal and Polymer Materials Processing, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, sebastian.pawlak@polsl.pl
Bibliografia
  • [1] L. A. Dobrzański, Engineering materials and material design. Principles of materials science and physical metallurgy. WNT, Warszawa, 2006 (in Polish).
  • [2] O. I. Okoli, G. F. Smith, Failure modes of fibre reinforced composites: The effect o strain rate and fibre content, Journal of Materials Science 33 (1998) 5415-5422.
  • [3] J. H. Chen, E. Schulz, J. Bohse, G. Hinrichsen, Effect of fibre content on the interlaminar fracture toughness of unidirectional glass-fibre/polyamide composite, Composites A 30 (1999) 747-755.
  • [4] Nam-Jeong Lee, Jyongsik Jang, The effect of fiber content on the mechanical properties of glass fibre mat/polypropylene composites. Composites A 30 (1999) 815-822.
  • [5] S. B. Heru, J. Komotori, M. Shimizu, Y. Miyano, Effects of the fiber content on the longitudinal tensile fracture behavior of uni-directional carbon/epoxy composites, Journal of Materials Processing Technology 67 (1997) 89-93.
  • [6] Y. D. Huang, L. Liu, Z. Q. Zhang, Y. Wan, On-line monitoring of resin content for film impregnation process. Composites Science and Technology 58 (1998) 1531-1534.
  • [7] P. N. Bindumadhavan, Heng Keng Wah, O. Prabhakar, Assessment of particle-matrix debonding in particulate metal matrix composites using ultrasonic velocity measurements. Materials Science and Engineering A323 (2002) 42-51.
  • [8] C. H. Gur, Investigation of microstructure-ultrasonic velocity relationship in SiC-reinforced aluminium metal matrix composites. Materials Science and Engineering A361 (2003) 29-34.
  • [9] G. Marsh, Finding flaws in composites. Reinforced Plastics, (2002) 22-28.
  • [10] G. Nesvijski Edouard, Some aspects of ultrasonic testing of composites. Composite Structures 48 (2000) 151-155.
  • [11] C. Vaccaro, D. Akers, Damage assessment in a SMC composite by means of ultrasonic techniques. Review of Progress in Quantitative Non-destructive Evaluation. Vol. 13, Plenum Press, New York, 1996.
  • [12] C. Potel, T. Chotard, J. F. Belleval, M. Benzeggagh, Characterisation of composite material by ultrasonic methods. Composites Part B (1998) 159-169.
  • [13] M. Rojek, J. Stabik, G. Wróbel, Ultrasonic methods in diagnostics of epoxy-glass composites. Journal of Materials Processing Technology 164-165 (2005) 162-163.
  • [14] G. Wróbel, Ł. Wierzbicki, Ultrasounds in diagnosis of strength changes in laminates put in ageing conditions, Proceedings of the 3rd Scientific Conference on „Materials, Mechanical and Manufacturing Engineering” M3E'2005, Gliwice-Wisła, 2005, 575-580.
  • [15] K. Maslov, Y. R. Kim, K. V. Kinra, J. N. Pagano, A new technique for the ultrasonic detection of internal transverse cracks in carbon-fibre/bismaleimide composite laminates. Composite Science and Technology 60 (2000) 2185-2190.
  • [16] A. P. Mouritz, C. Townsend, M. Z. Shah Khan, Nondestructive detection of fatigue damage in thick composites by pulse-echo ultrasonics. Composites Science and Technology 60 (2000) 23-32.
  • [17] C. Scarponi, G. Briotti, Ultrasonic technique for the evaluation of delamination on CFRP, GFRP, KFRP composite materials. Composites Part B 31 (2000) 237-243.
  • [18] K. Imielińska, M. Castaings, R. Wojtyra, J. Haras, E. Le Clezio, B. Hosten, Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites, Journal of Materials Processing Technology 157-158 (2004) 513-522.
  • [19] A. Lewińska-Romicka, Non-destructive testings. The basics of defectoscopy. WNT, Warszawa, 2001 (in Polish).
  • [20] A. Śliwiński, Ultrasounds and their applications. WNT, Warszawa, 2001 (in Polish).
  • [21] S. Ochelski, Experimental methods in construction composites mechanics. WNT, Warszawa 2004 (in Polish).
  • [22] G. Wróbel, Ł. Wierzbicki, S. Pawlak, Ultrasonic quality evaluation method for polyester glass laminated materials. Proceedings of the 11th International Scientific Conference on Contemporary „Achievements in Mechanics, Manufacturing and Materials Science”. Gliwice-Zakopane, 2005, (CD ROM).
  • [23] G. Wróbel, S. Pawlak, Ultrasonic evaluation of the fiber content in glass/epoxy composites. Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 187-190.
  • [24] Standard ISO 1172:2002: „Textile-glass-reinforced plastic, prepregs, moulding compounds and laminates-Determination of the textile-glass and mineral-filler content-Calcination methods”.
  • [25] Z. Pawłowski, Handbook of non-destructive testing. Association of Polish Engineers and Mechanical Engineering Technicians. Warszawa 1984 (in Polish).
  • [26] M. Vural, A. Akkus, The ultrasonic testing of the spot welded different steel sheets, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 247-250.
  • [27] M. Rojek, J. Stabik, S. Sokół, Fatigue and ultrasonic testing of epoxy-glass composites, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 183-186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.