PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compaction of the diamond-Ti3SiC2 graded material by the high-speed centrifugal compaction process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Sedimentation of particles in a viscous fluid is a main physical problem in fluid mechanics. Sedimentation is benchmark of one of the technica; methods to produce the functionally graded materials (FGM) with a continuous spatial change of mechanical properties. The aim of the research was execution of mathematical calculations of the phases distribution for the phase graded diamond-Ti3SiC2 compacts which were verified with phases distribution in compacts after the high pressure-high temperature sintering process. Design/methodology/approach: In this paper, we construct a mathematical model of FGM basing on the modifications of the Stokes formula. We proposed an algorithm to describe sedimentation of the group of spherical particles of different sizes and different materials. Main calculations for this system and real conditions of the highspeed centrifugal compaction process are made using the Barnea-Mizrahi equation. Deposition process was carried out using the ultra centrifuge UP 65M with rotational speed of 15000 to 25000 rpm. Particle size distribution for the diamond and Ti3SiC2 powders were measured using Shimadzu apparatus. Findings: The results of calculations and microscopic analysis are compared. The obtained results of mathematical calculations demonstrate that for the considered diamond-Ti3SiC2 suspensions the obtained compact has the structure of the laminate what confirmed microscopic analysis. Practical implications: The mathematical simulations using our algorithm show that it is possible to obtain continuous concentrations of the both materials with appropriate initial suspensions. Thus our method allows to obtain graded materials. Originality/value: This mathematical model gives possibility of use to describe sedimentation of the group of spherical particles different materials and different sizes.
Rocznik
Strony
677--682
Opis fizyczny
Bibliogr. 17 poz., il., wykr.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] R. Borchert, N. Willert-Porada, An oxidation resistant metal-ceramic functionally graded material, Proceedings of the Conference „90th Cimtec-World Ceramics Congress, Getting into the 2000's-Part C”, TECHNA, 1990, 313-320.
  • [2] L. Jaworska, M. Rozmus, B. Królicka, A. Twardowska, Functionally graded cermets, Journal of Achievement in Materials and Manufacturing Engineering 17 (2006) 73-76.
  • [3] G. Matula, L. A. Dobrzański, Structure and properties of FGM manufactured on the basis of HS6-5-2, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 101-104.
  • [4] M. Mirzababaee, M. Tahani, S. M. Zebarjad, A new approach for the analysis of functionally graded beams, Journal of Achievement in Materials and Manufacturing Engineering 17 (2006) 265-268.
  • [5] L. A. Dobrzański, A. Kloc, G. Matula, J. Domagała, J. M. Torralba, Effect of carbon concentration on structure and properties of the gradient tool materials, Journal of Achievement in Materials and Manufacturing Engineering 17 (2006) 45-48.
  • [6] J. Bandrowski, H. Merta, J. Zioło, Sedimentation of suspention, Silesian University of Technology Press, Gliwice, 2001.
  • [7] R. B. Jones, R. Kutteh, Sedimentation of colloidal particles near a wall, Stokesian dynamic simulations, Journal of Physical Chemistry 1 (1999) 2121-2139.
  • [8] M. L. Ekel-Jeżewska, B. Metzger, E. Guazzelli, Spherical cloud of point particles falling in a viscous fluid, Physical Fluids 18 (2006) 123-130.
  • [9] T. Bosse, L. Kleiser, E. Meiburg, Small particles in homogeneous turbulence: Settling velocity enhancement by two-way coupling, Physical Fluids 18 (2006) 1-18.
  • [10] M. P. Brenner, Screening Mechanisms in Sedimentation, Phys. Fluids 11 (1999) 754-772.
  • [11] A. J .C. Ladd, Effects of container walls on the velocity fluctuations of sedimenting spheres, Physical Review Letters 88 (2002) 1-4.
  • [12] H. Nicolai, Y. Peysson, É. Guazzelli: Velocity fluctuations of a heavy sphere falling through a sedimenting suspension, Physical Fluids 8 (1996) 855-862.
  • [13] E. Guazzelli, Evolution of particle-velocity correlation in sedimentation, Physical Fluids 13 (2001) 1537-1540.
  • [14] P. J. Mucha, S. Y. Tee, D. A. Weitz, B. I. Shraiman, M. P. Brenner, A model for velocity fluctuations in sedimentation, Journal of Fluid Mechanic 501 (2004) 71-104.
  • [15] N. Q. Nguyen, A. J. C. Ladd, Sedimentation of hard-sphere suspensions at low Reynolds number, Journal of Fluid Mechanic 525 (2005) 73-104.
  • [16] M. C. Bustos, R. Burger, F. Concha, E. M. Tory, Sedimentation and Thickening, Kluwer Academic Publ. Dordrecht, 1999.
  • [17] S. Ramaswamy, Issues in the statistical mechanics of steady sedimentation, Advances in Physics 50 (2001) 341-345.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.