PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of carbide (W, Ti)C on the structure and properties of tool gradient materials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The goal of this work is to obtain the gradient materials based on the (W, Ti)C with high disproportion of cobalt matrix portion between core and surface layer. In this work is shown the structure and properties of Tool Gradient Materials (TGM). Design/methodology/approach: In presented study (W, Ti)C powder were mixed with cobalt powder. Prepared mixtures were heaped up, pressed at 300MPa and sintered in vacuum furnace at temperatures 1450*C. Produced gradient materials were studied by scanning electron microscope (SEM), light microscope. Hardness tests and density examination were also made. Findings: According to carried out researches it could be stated, that forming the gradient materials with highest portion of complex carbide (W,Ti)C 91-95%, using uniaxial unilateral pressing, could be possible after adding into each layer of mixtures 2% of paraffin lubricant. High diversification of cobalt matrix ratio in comparison with hard phases in subsequent layers of gradient materials leads to their deformation in as sintered state. In case of all gradient materials, mean hardness was equal about 1600 HV1. Whereas, hardness of lower cobalt matrix rich layers has value about 1450 HV1 which increases up to 1700 HV1 for lower layer of material rich with hard carbide phases. Practical implications: The Powder Metallurgy gives the possibility of manufacturing tools gradient materials characterised by very high hardness on the surface and relative ductility in core. Originality/value: In the work the manufacturing of TGM on the basis of different portion of cobalt matrix reinforced with hard ceramics particles carried out in order to improve the abrasion resistance and ductility of tool cutting materials.
Rocznik
Strony
617--620
Opis fizyczny
Bibliogr. 15 poz., il., tab.
Twórcy
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
Bibliografia
  • [1] S. Luyckx, C. N. Machio, Characterization of WC-VC-Co thermal spray powders and coatings, Journal of Refractory Metals and Hard Metals 25, 1 (2007) 11-15.
  • [2] J. Jung, S. Kang, Sintered (Ti,W)C carbides, Scripta Materialia 56 (2007) 561-564.
  • [3] N. G. Hashe, J. H. Neethling, P. R. Berndt, H. O. Andrén, S. Norgren, A comparison of the microstructures of WC-VC-TiC-Co and WC-VC-Co cemented carbides, Journal of Refractory Metals and Hard Metals 20, 1 (2002) 51-60.
  • [4] H. Saito, A. Iwabuchi, T. Shimizu, Effects of Co content and WC grain size on wear of WC cemented carbide, Wear 261 (2006) 126-132.
  • [5] M. Rosso, Ceramic and metal matrix composites: Routes and properties, Journal of Materials Processing Technology 175 (2006) 364-375.
  • [6] Y. Liu, H. Wang, Z. Long, P. K. Liaw, J. Yang, B. Huang, Microstructural evolution and mechanical behaviors of graded cemented carbides, Materials Science and Engineering, A 426 (2006) 346-354.
  • [7] L. A. Dobrzański, A. Kloc, G. Matula, J. Domagała, J. M. Torralba, Effect of carbon concentration on structure and propertiws of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 17, 1-2 (2006) 45-48.
  • [8] W. Lengauer, K. Dreyer, Functionally Graded hardmetals, Journal of Alloys and Compounds 338 (2002) 194-212.
  • [9] B. Krebach, A. Neubrand, H. Reidel, Processing techniques for functionally graded materials, Materials Science and Engineering A362 (2003) 81-105.
  • [10] L. A. Dobrzański, A. Kloc-Ptaszna, A. Dybowska, G. Matula, E. Gordo, J. M. Torralba, Effect of WC concentration on structure and properties of the gradient tool materials, Journal of Achievements in Materials and Manufacturing Engineering 20, 1-2 (2007) 91-94.
  • [11] J. Ma, G. E. B. Tan, Processing and characterization of metal-ceramics functionally gradient materials, Journal of Materials Processing Technology 113 (2001) 446-449.
  • [12] W. Acchor, C. Zollfrank, P. Greil, Mickrostructure and mechanical properties of WC-Co rainforced with NbC, Materials Research 7, 3 (2004) 445-450.
  • [13] J. L. Johnson, R. M. German, Liquid Phase Sintering of Functionally Graded W-Cu Composites, 16th International Plansee Seminar, 2 (2005) 116-130.
  • [14] G. Matula, L. A. Dobrzański, B. Dołżańska, Structure and properties of TGM manufactured on the basis of cobalt, Journal of Achievements in Materials and Manufacturing Engineering 20, 1-2 (2007) 151-154.
  • [15] Kawasaki, R. Watanabe, Concept and P/M fabrication of functionally gradient materials, Ceramics International, 23 (1997) 73-83.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.