PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microstructure characterization of deformed copper by XRD line broadening

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the present study was to determine the changes in microstructure taking place during deformation with methods like compression, compression with oscillatory torsion as well as compression and subsequent compression with oscillatory torsion (combined method). Design/methodology/approach: The study was conducted on M1E grade Cu. Several methods were used in this study, such as: transmission electron microscopy and X-ray diffraction. The X-ray diffraction line profile analysis was applied to determine crystallite size and density of dislocations. Findings: Application of compression and oscillatory torsion without previous compression resulted in decrease of grain size and crystallite size and increase of lattice distortion caused by dislocation compared to the combined method of deformation. In specimen with higher microstrain and smaller grain size a higher fraction of edge dislocations was observed. Research limitations/implications: Obtained results can be useful to modify the process and design deformation parameters. Practical implications: The knowledge of the characteristic features of unconventionally deformed materials will provide the usability of the method employed to produce materials with desired functional properties. Originality/value: Compression with oscillatory compression is a deformation procedure applied to achieve large strains. However there is no studies on evolution of the microstructures during deformation obtained on the way of the methods mentioned above. This paper provides such an information.
Rocznik
Strony
605--608
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
autor
  • Department of Material Science, Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland, tomasz.rzychon@polsl.pl
Bibliografia
  • [1] M. Greger, R. Kocich, L. Cizek, L. A. Dobrzański, M. Widomska, B. Buretowa, A. Silbernagel, The structure and properties of chosen metals after ECAP, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 103-106.
  • [2] Z. Gronostajski, K. Jaśkiewicz, Influence of monotonic and cyclic deformation sequence on behavior of CuSi3.5 silicon bronze, Proceedings of the 11th Scientific International Conference „Achievements in Mechanical and Materials Engineering” AMME'2002, Gliwice-Zakopane, 2002, 219-222.
  • [3] N. Hansen, X. Huang, R. Ueji, N. Tsuji, Structure and strength after large strain deformation, Materials Science and Engineering A387-389 (2004) 191-194.
  • [4] G. Niewielski, D. Kuc, K. Rodak, F. Grosman, J. Pawlicki, Influence of strain on the copper structure dunder controlled deformation path conditions, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 109-112.
  • [5] K. Rodak, Ultrafine grained Cu processed by compression with oscillatory torsion, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 491-494.
  • [6] K. Rodak, Microstructure of severely deformed Cu by using oscillatory compression method, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 179-182.
  • [7] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-189.
  • [8] G. Sakai, Z. Horita, T. G. Langdon, Grain refinement and superplasticity in aluminum alloy processed by highpressure torsion, Materials Science and Engineering A393 (2005) 344-351.
  • [9] N. Krasilnikov, W. Lojkowski, Z. Pakiela, R. Valiev, Tensile strength and ductility of ultra-fine-grained Nickel processed by severe plastic deformation, Materials Science and Engineering A 397 (2005) 330-337.
  • [10] B. Mingler, H. P. Karnthaler, M. Zehetbauer, R. Z. Valiev, TEM investigation of multidirectionally deformed copper Materials Science and Engineering A 319-321 (2001) 242-245.
  • [11] A. P. Zhilyaev, B. K. Kim, J. A. Szpunar, M. D. Baro, T. G. Langdon, The microstructural characteristics of ultrafine-grained nickel, Materials Science and Engineering A 391 (2005) 377-389.
  • [12] T. Ungar, I. Dragomir, A. Revesz, A. Borbely, The contrast factor of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice, Journal Applied Crystallography 32 (1999) 992-1002.
  • [13] J. Gubicza, G. Ribarik, G. R. Goren-Muginstein, A. R. Rosen, T. Ungar, The density and the character of dislocation in cubic and hexagonal polycrystals determined by X-ray diffraction, Materials Science and Engineering A309-310 (2001) 60-63.
  • [14] T. Ungar, J. Gubicza, G. Ribarik, A. Borbely, Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals, Journal Applied Crystallography 34 (2001) 298-310.
  • [15] D. Balzar, in R. L. Snyder, H. J. Bunge, J. Fiala (Eds.), Defect and Microstructure Analysis from Diffraction, International Union of Crystallography, vol. 10, Oxford University Press, New York, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0002-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.